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Abstract 

The problem of scanned surfaces reconstruction is often being solved in computer graphic. This article deals with similarity measure 
of given triangular meshes in STL format are obtained from several scanning of one calibration artefact. While scanning the object, 
the noise or another inaccuracy can appear. To compare these meshes several types of shape functions are used, that are applied onto 
individual meshes, and then the results are compared in graphs. 
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1. Introduction 

In this paper, the shape functions and shape distributions 
[1-5] are used to determine similarity between five 
meshes. These meshes are in STL format, it means they 
are given as triangular meshes with face normals, in text 
form they are given as lists of vertex coordinates (in spe-
cial order to save the sequence of vertices in each face) 
with normal vectors for each face, which are oriented out-
wards of the object. Meshes were obtained by optical 
scanning of ball-bar standard (formed by two spheres and 
cylinder), Fig. 1, which is used for calibration of optical 
scanners. 

The aim of this paper is to find the similarity between 
meshes by using different shape functions and shape dis-
tributions. 

 

 
Fig. 1. Ball-bar standard 

1.1. Triangular meshes processing 

1.1.1. Removal of inappropriate points 

Since the five meshes obtained by optical scanning of the 
same ball-bar were in different position and had inappro-
priate points, the pre-processing had to be done. Inappro-
priate points had to be removed, because they could dis-
tort the comparison, or result. So that the meshes were 
moved into the same position, where the centre of line 
segment with endpoints in sphere centres (i.e. �� and �� 
in Fig. 2) was moved to origin and this line segment was 
situated on �-axis. Then the inappropriate points were re-
moved by using parallel planes (see Fig. 2). The least 
square method was used to create a mesh of the nominal 
CAD model of the object in the suitable position (depicted 
in lower part of Fig. 2). 
 

 

 
Fig. 2. Modified ball-bar meshes and nominal model 

1.1.2. Application of shape functions 

Various types of shape functions were used to com-
pare these meshes. Shape functions described in [1] were 
used, where the D1 and D4 functions were modified. 
Function D2 was used in the same form. Modification of 
D1 function measures the distance of each point of the 
mesh from the origin (details in [2]). The D4 function 
modification measures the cube root of tetrahedron vol-
ume, where one vertex is in the centroid of the ball-bar 
mesh and one tetrahedron face is the mesh triangle.  

The random sampling, described in [1], is in this paper 
represented by mesh vertices. The oriented distances are 
also taken into consideration – for this position of meshes 
the sign of �-coordinates of special points creates the ori-
entations of each distance or volume (special points are 
for D1 the �-coordinates of the vertices, for D2 they are 
�-coordinates of centres of line segments, for D3 the �-
coordinates of triangles centroids and for D4 the �-coor-
dinates of tetrahedron centroids). So that the formula for 
oriented shape function D1 is: 

 �� = sign���
���� + ��� + ���, � = 0,1, … , � (1) 

where �� = ��� , �� , ��
 are vertices of the mesh. Then, for-
mula for oriented D2 function is: 

 ��̅ = sign���
|��|, � = 0,1, … , � (2) 

where �� = ��� , �� , ��
 are centres of line segments and �� 
are vectors between two mesh vertices. At last, the for-
mula for oriented D4 function is: 

 ��� = sign���
�� ×  
 ∙ ", � = 0,1, … , # (3) 
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where $� = ��� , �� , ��
 are centroids of tetrahedrons and 
vectors �,   and " are given by vertices of mesh triangle 
and centroid of the mesh.  

For comparison, the shape functions without the ori-
entation (it means formulas without sign���
) are also in-
cluded. But the oriented functions are more important, be-
cause they show rough shape of each mesh in the final 
histogram (it is clearly visible from histogram for D1 
function – see Fig. 3 and compare it with Fig. 2). 

 

 
Fig. 3. Histogram for D1 function 

1.2. Shape distributions 

After applying the shape functions, frequency histo-
grams were constructed. Frequency histogram shows how 
many values (for example distances or volumes) fall into 
each of the fixed sized bins. 

But since each mesh has different number of points, 
the frequencies had to be divided by the number of mesh 
points (i. e. must be normalized). This was done for each 
mesh and for each shape function.  

To compare histograms, the frequencies were repre-
sented by piecewise linear functions with equally spaced 
vertices. This is so called shape distribution [1, 3]. 

The similarity measure of each two histograms (or 
equally two meshes) is represented by the Minkowski %� 
norm (presented in [1]): 

 &��, '
 = ∑ |�� ) '�|*
�+� , (4) 

where �� and '� are the function values from formula (1), 
(2) or (3). This function measures “area” between two 
functions, or more precisely it sums the absolute value of 
differences between two frequencies in same bin over all 
bins. It is better than using integral for this case, because 
firstly graphs are only connections of discrete points 

Fig. 4. Frequency histogram for D1 function (shape dis-

tributions) 

from histograms, secondly this function shows the differ-
ences of two meshes more accurately for each bin. So that, 
the lower the number is, more similar the corresponding 
meshes are.  

2. Comparison of results 

2.1. Results for D1 function 

Shape distributions for D1 function are depicted in 
Fig. 4 and Tab. 1. It is visible from Fig. 4, that the meshes 
1 and 5 have the worst similarity, because its course is 
different from the course of nominal mesh. These similar-
ities are preciously obvious from table of Minkowski 
norms for two meshes, Tab. 1. There are compared only 
meshes 1 to 5 to each other. This table shows the best sim-
ilarity of meshes 3 and 4 (because the number of these two 
is the lowest) and the worst similarity between meshes 1 
and 5 (it is the highest number from the table). 

Table 1. Minkowski %� norm for shape distribution D1. 

%� M1 M2 M3 M4 M5 

M1 0.0000 0.0930 0.1462 0.1468 0.1525 

M2 0.0930 0.0000 0.0870 0.0832 0.0928 

M3 0.1462 0.0870 0.0000 0.0497 0.0593 

M4 0.1468 0.0832 0.0497 0.0000 0.0689 

M5 0.1525 0.0928 0.0593 0.0689 0.0000 

2.2. Results for D2 function 

It is obvious from Tab. 2 and Fig. 5 and 6, that the best 
similarity is (when using D2 function) between meshes 1 
and 2. Vice versa, the worst similarity for this shape func-
tion is between meshes 2 and 4. You can compare graphs 
for directed (or oriented) and undirected measures (Fig. 5 
and 6). Tab. 3 and Fig. 6 show the shape distributions for 
oriented distances of two random points of the mesh. Here 
the meshes 2 and 4 are similar and meshes 1 and 5 are 
least similar.  

 

 

 

 

0

0.004

0.008

0.012

0.016

0.02

-3
4

0

-2
9

6

-2
5

2

-2
0

8

-1
6

4

-1
2

0

-7
6

-3
2

1
2

5
6

1
0

0

1
4

4

1
8

8

2
3

2

2
7

6

3
2

0R
e

la
ti

v
e

 f
re

q
u

e
n

ci
e

s

Oriented distances of vertices (mm)



Studentská tvůrčí činnost 2018 | České vysoké učení technické v Praze | Fakulta strojní 

 

Table 2. Minkowski %� norm for shape distribution D2. 

%� M1 M2 M3 M4 M5 

M1 0.000 0.074 0.125 0.122 0.109 

M2 0.074 0.000 0.087 0.115 0.094 

M3 0.125 0.087 0.000 0.079 0.126 

M4 0.122 0.115 0.079 0.000 0.154 

M5 0.109 0.094 0.126 0.154 0.000 

Table 3. Minkowski %� norm for oriented shape distribution D2. 

%� M1 M2 M3 M4 M5 

M1 0.0000 0.0127 0.0180 0.0292 0.0184 

M2 0.0127 0.0000 0.0159 0.0255 0.0190 

M3 0.0180 0.0159 0.0000 0.0165 0.0166 

M4 0.0292 0.0254 0.0165 0.0000 0.0219 

M5 0.0184 0.0190 0.0166 0.0219 0.0000 

Fig. 5. Frequency histogram for D2 function  

Fig. 6. Frequency histogram for oriented D2 function 

2.3. Results for D4 function 

D4 function measuring the volumes of tetrahedrons 
gives these results for frequency histograms and Minkow-
ski norms: for undirected measure the most similar 
meshes are 1 and 2, least similar are meshes 3 and 5 (see 
Tab. 4 and Fig. 7); for oriented measure are meshes 2 and 
3 most similar and meshes 4 and 5 least similar (see Tab. 
5 and Fig. 8).  

 

Table 4. Minkowski %� norm for shape distribution D4. 

%� M1 M2 M3 M4 M5 

M1 0.000 0.074 0.125 0.122 0.109 

M2 0.074 0.000 0.087 0.115 0.094 

M3 0.125 0.087 0.000 0.079 0.126 

M4 0.122 0.115 0.079 0.000 0.154 

M5 0.109 0.094 0.126 0.154 0.000 

Table 5. Minkowski %� norm for oriented shape distribution D4. 

%� M1 M2 M3 M4 M5 

M1 0.000 0.088 0.111 0.122 0.115 

M2 0.088 0.000 0.083 0.138 0.107 

M3 0.111 0.083 0.000 0.101 0.125 

M4 0.122 0.138 0.101 0.000 0.157 

M5 0.115 0.107 0.125 0.157 0.000 

 

2.4. Result from shape distributions 

According to the results from Minkowski norms, from 
D1 function the best similarity is between meshes 3 and 
4, from D2 function it is between meshes 1 and 2 (or 1 and 
5, respectively) and from D4 function it is between 
meshes 1 and 2 (or 4 and 5, respectively). We can see that 
each function shows a bit distinct result, but the same sim-
ilarity measure is for function D2 and D4 (for undirected 
measure) and they indicate, that the most similar meshes 
are meshes 1 and 2.  
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Fig. 7. Frequency histogram for D4 function  

Fig. 8. Frequency histogram for oriented D4 function 

 
We can also compare the arithmetic means of Min-

kowski norms for each mesh in each function. As depicted 
in Tab. 6, we can say that from measures for functions D2, 
D2-oriented and D4-oriented are the highest numbers in 
the column for mesh 4. When comparing functions D1 
and D2 the lowest number is for mesh 3. The lowest num-
ber means the most suitable similarity (i.e. this mesh is the 
most similar to each other). Finally, we could say the most 
suitable mesh for processing can be the mesh 3, the worst 
can be the mesh 4. 

Table 5. Minkowski %� norm for oriented shape distribution D4. 

Arithm. 
means 

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 

D1 0.134 0.089 0.085 0.087 0.093 

D2 0.019602 0.019608 0.0168 0.0232 0.0190 

D2 ori-
ented 

0.03118 0.03706 0.03709 0.0434 0.0333 

D4 0.108 0.093 0.104 0.117 0.121 

D4 ori-
ented 

0.109 0.104 0.105 0.129 0.126 

3. Conclusion 

The shape functions can show differences between 
meshes. Shape distributions show how big these differ-
ences are and so we can compare them. The shape func-
tions were used here as in [1], some of them with modifi-
cations. Because results of this study vary, the further pro-
cessing have to be done (such as detailed comparison with 
another function or modification of these functions). This 
process can suggest good approach to find relations  
 

 

among meshes of same object obtained by optical scan-
ning, but need continuation.  

List of symbols 

�,  ," vectors between two points 
|�| Euclidean norm of vector � 
$� centroid of the object with coordinates �� , �� , ��  
�, ' two shape functions  
�� �-th centre of line segment with coordinates 

�� , �� , ��  
�� �-th vertex of the mesh with coordinates �� , �� , ��  
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