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Abstract 
The paper deals with new derivation and solution of balance equations. These equations are used to process experimental data of       
3-dimensional flow fields of compressible fluids. Strict balance of mass and momentum flux and energy of local measured values of 
3-D flow fields with assumption that the gas is ideal and flow is adiabatic, is conducted. Results of this balance are integral parameters 
of the whole flow field. These are later used for evaluation of kinetic energy loss and further aerodynamic investigation. 
Keywords: compressible flow, balance equations, three-dimensional flow field, experimental data evaluation                   

1. Introduction 

Rapid development of measuring equipment in fluid 
mechanics had brought its own, unique problems. One of 
those is large amount of data that needs to be processed. 
Large amount of data cannot serve for evaluation of any 
investigated experiment. Two-dimensional example is 
showed in Figure 1.  

 
Figure 1 - 2-D experimental results illustration 

There is distribution of values of static and total 
pressure and angle of stagnation flow. It’s obvious, that 
the courses of the values differ and therefore can’t be 
related easily to quality of the flow field. This is especially 
valid point in three-dimensional flow, because in any 
measured point, there will be additional angle (yaw) and 
there will be much more data. Hence individual points of 
data have no evaluation value at all.  

Therefore, the balance equations were to be utilized. 
General idea behind those equations is that the pressure 
and flow direction will be established in each 
measurement point. Therefore mass flow of whole area 
can be obtained as well as momentum flux. The equations 
will then give one value of speed and direction to the 
whole area that would hypothetically set in in the infinite 
distance from the measuring plane. It can be perceived as 

kind of physical average. Having assigned one value of 
speed and its direction to the whole investigated area gives 
researcher an option to evaluate quality of flow field. 
2.  Physical background 
Situation that method of data reduction will be most 
commonly used with combination of aerial reading of 
parameters downstream the investigated object, as seen on 
Figure 2. 

 Figure 2 - Illustration of experiment configuration. 
  

  
Figure 3 - measured angles explained 

The measurements require a probe capable of 
measuring the direction of stagnation flow. In case this 
method was developed for 5-hole conical probe. In the 
Figure 3 the probe used is depicted. Rotation around the 



Studentská tvůrčí činnost 2016 | České vysoké učení technické v Praze | Fakulta strojní 

Author contact infromation: radnic@it.cas.cz 
 

axis that’s holding profile (represented by blue arrow) is 
denoted ߚ and figures as pitch; active PID regulator 
balances the probe in the direction of the flow. This 
rotation occurs in ݔ −  plane. Deviation in plane ݖ
perpendicular to rotation – yaw, denoted ߛ and 
represented by red arrow is evaluated solely by calibration 
of the probe and different pressures that are measured; see 
[1].  

The equations balance mass flux, and momentum flux, 
which is also dependent on mass flux. The following 
formulation of mass flux is stated: 

 ሶ݉ = ඵ ଶ(௬,௭)ߩ ∙ ଶ(௬,௭)ݒ ∙ cos൫ߚଶ(௬,௭)൯ ∙
 

஺ ∙ cos൫ߛଶ(௬,௭)൯ ∙ ݕ݀ ∙  ݖ݀
(1) 

Equation (1) contains several parameters that are not 
directly measured. Density ߩ and velocity ݒ cannot be 
obtained in experiment. However static pressure in front 
of measured objects is measured and assuming that 
flowing media is an ideal gas and that the process is 
adiabatic, equation can be modified. 

Equation of state of ideal gas: 
  

ଶߩ = ଶ݌
ݎ ∙ ଶܶ

 (2) 

Equation of energy: 
  

ଶܶ
଴ܶଶ

= 1 − ߢ + 1
ߢ − 1 ∙  ଶ∗ଶ (3)ܯ

Where ߢ is Poisson’s ratio, ܯ∗ is dimensionless speed, 
defined by following equation: 

 
 

∗ଶܯ = ඨߢ + 1
ߢ − 1 ∙ ൥1 − ൬݌ଶ

଴݌
൰

఑ିଵ఑ ൩  
(4) 

Velocity was substituted by following form: 

 
 

ଶݒ =  ඨ2ߢ ∙ ݎ
ߢ − 1 ∙ ଴ܶ ∙ ൥1 − ൬ ଶ݌

଴ଶ݌
൰

఑ିଵ఑ ൩ 
(5) 

Implementing energy equation into equation of state 
of ideal gas gives us substitution for density, while 
presuming adiabatic process, therefore ଴ܶ = ଴ܶଵ = ଴ܶଶ: 

 
 

ଶߩ = ଶ݌

ݎ ∙ ଴ܶଶ ∙ ቀ݌ଶ݌଴ቁ
఑ିଵ఑

 (6) 

 
These substitutions allow the argument of mass flow 

integral equation to be stated as following:  

 
ܣ ∙ ඥݎ ∙ ଴ܶ

ݎ ∙ ଴ܶଶ
∙ ൬ ଶ݌

଴ଶ݌
൰

ଵ఑ ∙ ଴ଶ݌ ∙

∙  ඨ ߢ2
ߢ − 1 ∙ ൥1 − ൬ ଶ݌

଴ଶ݌
൰

఑ିଵ఑ ൩ ∙ (ଶߚ)ݏ݋ܿ
∙  (ଶߛ)ݏ݋ܿ

(7) 

The equation of mass flux density as stated in [1]  was 
used for simplification of equation (7) 

 

 
(∗ଶܯ)ݍ =
= ඨ 2

ߢ − 1 ൬ߢ + 1
2 ൰

఑ାଵ఑ିଵ ൤1 − ൬ ݌
଴݌

൰൨
఑ିଵ఑ ൬ ݌

଴݌
൰

ଵ఑

= ൬ߢ + 1
2 ൰

ଵ఑ିଵ ∗ଶܯ ∙ ൬1 − ߢ − 1
ߢ + ଶ∗ଶ൰ܯ 1

ଵ఑ିଵ 

(8) 

The integral parameter of mass flux can then be stated 
in simplified form. All the unknowns in the equation have 
indexes (ݕ,  which means that they were obtained (ݖ
during measurement, when the probe was traversed 
trough its path and covered area of measurement. Note 
that the parameter also contains constants, so numeric 
value does not represent actual mass flux.  

 
 

௠ܫ = ඵ ଴ଶ(೤,೥)݌ ∙ ݍ ቀܯଶ(೤,೥)
∗ ቁ ∙ ଶ(௬,௭)൯ߚ൫ݏ݋ܿ ∙

 

஺ ∙ ଶ(௬,௭)൯ߛ൫ݏ݋ܿ ∙ ݕ݀ ∙  ݖ݀
(9) 

 
The mass flux equation in form seen above is related 

only to pressures and stagnation flow angles, static 
pressure and temperature, which are measured during the 
experiment.  

Values of other quantities would be obtained in very 
similar manner, using different dimensionless functions, 
as ratio of pressures [1]: 

(∗ଶܯ)ߨ  = ݌
଴݌

= ൬1 − ߢ − 1
ߢ + 1 ∙ ଶ∗ଶ൰ܯ

఑఑ିଵ 
 

(10) 

And function characterizing kinetic pressure [1]:  

 
(∗ଶܯ)߱ = ൬1 − ߢ − 1

ߢ + 1 ଶ∗ଶ൰ܯ
ଵ఑ିଵ ∙ ߢ

ߢ + 1∙  ଶ∗ଶܯ  
= ߢ

ߢ − 1 ∙ ൬ ݌
଴݌

൰
ଵ఑ ∙ ൭1 − ൬ ݌

଴݌
൰

఑ିଵ఑ ൱ 
 

(11) 

The momentum flux parameter in direction of x axis 
is then written as follows:  

௫ܫ = ∬ ଴ଶ(௬,௭)݌ ∙ ቂߨ ቀܯଶ∗(௬,௭)ቁ + 
஺

                  +2 ∙ ߱ ቀܯଶ∗(௬,௭)ቁ ∙ ଶ(௬,௭)൯ߚଶ൫ݏ݋ܿ ∙
ଶ(௬,௭)൯ቃߛଶ൫ݏ݋ܿ ݕ݀ ∙   ݖ݀

(12) 
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and momentum flux parameters in direction of axis y 

and z respectively:  

 
௬ܫ = 

= ඵ 2 ∙ ଴ଶ(೤,೥)݌ ∙ ߱ ቀܯଶ∗(௬,௭)ቁ ∙ ଶ(௬,௭)൯ߚ൫ݏ݋ܿ
 

஺
∙ 

∙ ଶ(௬,௭)൯ߚ൫݊݅ݏ ∙ ଶ(௬,௭)൯ߛ൫ݏ݋ܿ ∙ ݕ݀ ∙  ݖ݀
(13) 

 
 

௭ܫ =
= ඵ 2 ∙ ଴ଶ(೤,೥)݌ ∙ ߱ ቀܯଶ∗(௬,௭)ቁ ∙ ଶ(௬,௭)൯ߚ൫ݏ݋ܿ ∙

 

஺∙ ଶ(௬,௭)൯ߛ൫݊݅ݏ ∙ ଶ(௬,௭)൯ߛଶ൫ݏ݋ܿ ∙ ݕ݀ ∙  ݖ݀
(14) 

 3. Reference parameters 
Concept of reference parameters is based on assumption, 
that were the measurements conducted very far from the 
investigated profile, the parameters would stabilize over 
the investigated plane and have specific value that’s valid 
for whole experiment. Calculation of these parameters is 
then only finding values of investigated quantities that 
comply with all the measured data.  In order to do that 
system of equations must be solved. 
  

ܣ  ∙ ଴ଶ݌ ∙ (∗ଶܯ)ݍ  ∙ cos(ߚଶ) ∙ cos(ߛଶ) = ௠ܫ  (15) 

  
ܣ ∙ ଴ଶ݌ ∙ (∗ଶܯ)ߨ) + 2 ∙ (∗ଶܯ)߱ ∙ cosଶ(ߚଶ) ∙cosଶ(ߛଶ)) = ௫ܫ   

(16) 

  
2 ∙ ܣ ∙ ଴ଶ݌ ∙ (∗ଶܯ)߱ ∙ (ଶߚ)ݏ݋ܿ ∙ (ଶߛ)݊݅ݏ (ଶߛ)ݏ݋ܿ∙ =   ௬ܫ

(17) 

  
2 ∙ ܣ ∙ ଴ଶ݌ ∙ (∗ଶܯ)߱ ∙ (ଶߚ)ݏ݋ܿ ∙ (ଶߚ)݊݅ݏ (ଶߛ)ଶݏ݋ܿ∙ = ௭ܫ   

(18) 
 

2.1. Direct solution and results 
Key to direct solution was not to use any other than 
mathematical substitutions. The equations had to be 
rearranged and solution obtained. Equations (17) and (15) 
were divided to eliminate angle ߛ. Equations (16) and (18) 
were also divided, for elimination of ݌଴ଶ and finally 
equations (15) and (18) were divided for elimination of ߚ 
from the system. Thus ܯଶ∗ could be obtained, and it was 
stated as follows:  

 

௫ܫ 
௭ܫ

=

= ߢ + 1 − ଶ∗ଶܯ ∙ ൜ߢ + 1 − 2 ∙ ߢ ∙ ൤1 − ቀ ௠ቁଶܫ௭ܫ ∙ ൨ܣܥ ∙ (1 −  ൠ(ܤ

2 ∙ ଶ∗ଶܯ ∙ ߢ ∙ ඨ1 − ቀ ௠ቁଶܫ௭ܫ ∙ ܣܥ ∙ (1 − (ܤ ∙ ቀ ௠ቁଶܫ௭ܫ ∙ ܥ
ܣ√

 
(19) 

 
 
 
 

For:  
ܣ = ଶ∗ଶܯ ∙ ଶߢ − ൬ܫ௬

௠ܫ
൰

ଶ
∙ ൬ߢ + 1

2 ൰
ଶ∙఑఑ିଵ 

ܤ = 1 − ൬ܫ௬
௠ܫ

൰
ଶ

∙ ൬ߢ + 1
2 ൰

ଶ∙఑఑ିଵ ∙ 1
ଶ∗ଶܯ ∙  ଶߢ

ܥ = ൬ߢ + 1
2 ൰

ଶ∙఑఑ିଵ 
The equation (19) is composed only of unknown 

dimensionless speed and constants, thus presenting a 
solution. Rearranging of the said equation into explicit 
form proved to be difficult. The symbolical (Matlab) 
solution exists, however is far too complex to be analyzed 
yet.   

2.2. Known other solutions 
Method of data reduction with similar or identical input 
has already been solved using different approaches. One 
of those is using of substitution for velocity in direction 
௬௭ݒ ,௭ݒ ௬ andݒ = ඥݒ௬ଶ +  ௭ଶ; see [2] for furtherݒ
information. Quite similar is approach with measurement 
of wall angles instead of one wall and one dihedral angle 
was used to investigate radial cascade in cylindrical 
coordinates, see [3], and in Cartesian coordinates, see [4]. 
Another form of approach, relying on substitution of 
directional angles, is being utilized at IT CAS for 
evaluation of measured cascades. 

All proposed solutions share same characteristic, 
which is indirect approach. With this approach it is 
difficult to implement measurement uncertainty into 
equations. It is also difficult to perform theoretical 
analysis of the formulae and of expected results. Method 
described in [4] allows analysis to certain extent, but 
theoretical investigation of uncertainty is rendered next to 
impossible. 
 4. Conclusion 
The system of balance equations has been build and 
solved providing another tool for investigation 3-D flow 
fields of compressible fluid. Analysis of the results is yet 
to be made as well as uncertainty analysis. The solution 
proved to be difficult, but this was expected, as all prior 
authors used substitutions and other simplifications. 
Reference parameters of the flow past investigated body 
can be calculated. In near future, the analysis of the 
equation will be made. Evaluation of nature of the results 
will be conducted.  
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List of symbols 
݃݇) ௠ mass flux integral parameterܫ yaw angle (deg.) ߛ pitch angle (deg.) ߚ area of measurement (݉ଶ) ܣ  ∙ ݉ ∙  ௫ momentum flux in direction of x axis integralܫ (ଶିݏ

parameter (݇݃ ∙ ݉ ∙ ௬ܫ (ଶିݏ  momentum flux in direction of y axis integral 
parameter (݇݃ ∙ ݉ ∙  ௭ momentum flux in direction of z axis integralܫ (ଶିݏ
parameter (݇݃ ∙ ݉ ∙ ܬ) specific gas constant  ݎ mass flux density (1) ݍ pressure ratio (1) ߨ ଴ଶ total pressure in measured area (Pa)݌ ଶ static pressure in measured area (Pa)݌ ଶ∗ dimensionless speed (1)ܯ Poisson’s ratio (1) ߢ (ଶିݏ ݇݃⁄ ∙  density (݇݃/݉ଷ)  ߩ (ܭ

଴ܶ  static temperature (K) 
଴ܶଵ  total temperature in front of experiment (K) 
଴ܶଶ total temperature in measuring area (K) ߱ kinetic pressure function (1) 
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