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Abstract
This paper presents a method of real-time data transformation for better performance of normalized least mean squares
(NLMS) algorithm. The method centers input vector for adaptive filter online according to temporary statistical at-
tributes of the input vector. The method is derived for an adaptive filter with NLMS adaptation. The filter imple-
mentation is the linear neural unit. The stability condition for the given filter is also presented. The filter is tested on
multiple simulated time series contaminated with white noise and also on real measured signal. The convergence of the
suggested algorithm is also analyzed and time complexity is discussed.
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1. Introduction

Filtering is important part of signal processing in ge-
neral. The adaptive filter is such a filter that adap-
tively changes its transfer function during process of
filtering to minimize the filtering error [1]. The one
of the most common adaptive algorithm for adap-
tive filters is least mean squares (LMS) [2]. Appli-
cability of this algorithm for the adaptive filters was
extensively studied in past [3]. Plenty of LMS mo-
difications and variants have been derived and devel-
oped since this time. For example: normalized LMS
[4], total least mean squares [5], generalized normal-
ized gradient descent [6], proportionate normalized
least mean squares [7]. Probably the most common
modification for LMS is the mentioned learning rate
normalization, well-known as normalized least mean
squares (NLMS) [4]. The NLMS algorithm could pro-
duce better results than plain LMS. A lot of compar-
isons of LMS and NLMS have been done [8, 9, 10].
According to [7] the NLMS should work better than
classical LMS in cases where is big difference between
standard deviation of input vectors and standard de-
viation of all input data. The derivation and analysis
of NLMS is based on usual independence assumptions
[6], what also means, that input vector and adaptive
weights of filter should be zero mean. In practice this
condition may not be fulfilled. Common practice how
to deal with not zero mean data for further improve-
ment of LMS or NLMS adaptation result could be
achieved with transformation of measured data, as it
was used in studies [11, 12, 13, 14]. Commonly used
transformation is input vector centering or z-scoreing.
According to structure and scale of input data these
transformations could or could not improve the filter-
ing result with various influence. Problem is that the
mentioned normalization-like transformations are ap-
plicable only offline, when the data are already mea-
sured. Our proposed algorithms are based on the as-
sumption, that accuracy of learning process is related
to the condition number of input matrix and thus
the proposed methods is using online data centering
to achieve better filtering result. In this workpro-
pose a novel approach. The input vector is centered

according to actual mean value of input vector.must
note that our usage of this transformation does not
respect data structure and it can cause information
loss. But with correct usage of our method this loss
cause smaller performance decrease than the sub op-
timal data scale and structure. The proposed algo-
rithm is tested and compared with plain NLMS and
NLMS used on z-scored data to display, how could
be improved plain NLMS with our method according
to input data structure and scale. The NLMS with
offline z-score data results stands in this comparison
as unachievable goal for online adaptation.

1.1. Review of NLMS

An adaptive filter could be described with equation
ỹ(k) = w1 · x1(k) + ...+ wn · xn(k), (1)

or in a vector form
ỹ(k) = wT (k) · x(k), (2)

where k is discrete time index, ỹ(k) is filtered sig-
nal, w is vector of filter adaptive parameters (at the
beginning the parameters are set to small random
numbers) and x is input vector made from measured
signal y(k) and bias (= 1)

x(k) = [1, y(k − n− 1), ..., y(k − 1)], (3)
where n is the size of input vector. Our method
is based on normalized least mean squares (NLMS)
algorithm that is a modification of classical least
squares algorithm (LMS) also known as stochastic
gradient descent. The LMS weights adaptation could
be described as follows

w(k + 1) = w(k) + ∆w(k), (4)
where ∆w(k) is

∆w(k) = µ · e(k) · ∂y(k)

∂w(k)
= µ · e(k) · x(k), (5)

where µ is the learning rate (step size) and e is error
defined as

e(k) = y(k)− ỹ(k). (6)
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According to the general stability criteria of LMS [6]

|1− µ · x(k)T · x(k)| ≤ 1, (7)

the NLMS adaptation rule could be described as fol-
lows

∆w(k + 1) =
µ

ε+ x(k)T · x(k)
· x(k) ·w(k), (8)

where ε is a constant (regularization term) introduced
to preserve stability for inputs close to zero [6]. The
model is stable if

0 ≤ µ ≤ 2 +
2ε

x(k)T · x(k)
, (9)

or in case without regularization term ε

µ ∈< 0, 2 > . (10)

2. Filter model
Common transformation for improving the condition
number of input data matrix x is z-score of input data

yt(k) =
y(k)− ȳ ·~1

σy
, (11)

where ȳ is mean value of y, σy is standard devia-
tion of y and ~1 is n sample length vector of all ones.
The result of transformed signal filtering ỹt could be
transformed back as simple as

ỹ(k) = (ỹt(k) · σy) + ȳ ·~1. (12)

Filter with normalized data could be defined accord-
ing to (2) as follows

ỹt(k) = wT
t (k) · xt(k), (13)

where xt(k) is input vector build from transformed
data yt according to (3) and wt(k) is set of param-
eters of adaptive filter for transformed data. From
(11) and (13) is possible to obtain

ỹ(k)− ȳ
σy ·~1

= wT
t (k) ·

(
x(k)− ȳ ·~1

σy

)
, (14)

what could be simplified to

ỹ(k) = wT
t (k) · (x(k)− ȳ ·~1) + ȳ. (15)

The adaptation rule for such an adaptive filter could
be obtained in the same way as filter equation (15)
from (5) and (11) as follows

∆wt(k) =
µ

σ2
y

· e(k) · (x(k)− ȳ ·~1). (16)

This is still not beneficial for online filtering, be-
causeneed to know mean value for all the data, what
is impossible during real time filtering. Because of
that,propose to substitute the ȳ(k) with mean value
of input vector x̄(k) and σy with σx. These parame-
ters of input vectorcould obtain for every single sam-
ple just from vector x(k). That means that the input
vector will be centered

xc(k) = x(k)− x̄(k) ·~1. (17)

This usability suggestion is based on following as-
sumptions

ȳ ≈ x̄(k) ∧ σy ≈ σx. (18)

Now the equation for online centered adaptation looks

∆wt(k) =
µ

σ2
y

· e(k) · xc(k), (19)

and the filter equation stands as follows

ỹ(k) = wT
t (k) · xc(k) + x̄(k). (20)

The general stability criteria can be obtain from (19)
and (17) as

|1− µ

σ2
y

· xc(k)T · xc(k)| ≤ 1. (21)

The NLMS algorithm is already using the learn-
ing rate normalization (8) according to power of in-
put. For that reason there is no need to normal-
ize the learning rate furthermore according to power
σx. This simplification decrease the error caused by
σx 6= σy. Finally the proposed learning rule could be
described as follows

∆w(k + 1) =
µ

ε+ xc(k)T · xc(k)
· xc(k) ·w(k). (22)

3. Experimental analysis

3.1. Noise removal performance

Three different time series contaminated with white
noise are used For experimental analysis of noise re-
moval. First used time series is sum of two sinus
waves according to equation

y(k) =
a

2
· sin

(
k

21

)
+ a · sin

(
k

36

)
+ b, (23)

where a is amplitude and b is an offset. Second used
time series is chirp signal generated according the
equation

y(k) = a · sin
(

k

44− 5 · sin
(

k
500

)) + b. (24)

The last time series is discrete Mackey-Glass system
with parameters causing chaotic behaviour

ym(k+ 1) = 1.79 · ym(k) +
0.2 · ym(k − 23)

0.8 + ym(k − 23)10
. (25)

The data are scaled using parameters a and b To
demonstrate the advantages of the proposed method
on badly scaled data

y = aym + b. (26)

where a is scale and b is offset as in the previously in-
troduced time series. An example of generated time
series is in Fig. 1.
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Fig. 1. Time series used for experimental analysis, de-
scribed by (23), (24) and (25).

For every tested equationgenerated multiple time
series with different parameters a, b and constant
length N = 10000 of samples. First half of this se-
ries was used for filter training and second one was
used for testing, so error was measured only on sec-
ond half of the data. The noise that was used for the
data contamination is white noise with mean value in
0 and standard deviation of 4. The parameter µ was
tested in range from 0.05 to 1.8 with step 0.05 and as
the final result is presented only the best performance
achieved. The regularization parameter ε was set to 1
for all simulations. The length n of the used filers was
set to 20. As the filter performance criteria was used
MSE evaluated according to filter output and signal
without noise. The MSE of noisy and original signal
should be approximately 16 with the noise whatde-
scribed earlier. The results of experimental analysis
are summarized in Table 1. As expected the NLMS
with offline z-score data has the lowest MSE. The sec-
ond best algorithms was the online centered NLMS in
all cases where the offset b 6= 0.

Table 1. Results of filtering performance analysis

Data MSE (noise MSE ≈ 16)

Signal a b Online
centered

Offline
z-scored

Plain

chirp 50 -100 4.633 6.4 14.774

chirp 50 100 5.793 7.961 8.298

chirp 5 -20 1.467 1.475 3.108

chirp 5 0 2.19 1.497 1.628

chirp 5 20 1.713 1.525 2.74

mackay 50 -100 17.253 15.122 28.65

mackay 50 100 24.151 16.591 56.222

mackay 5 -20 2.443 1.737 4.038

mackay 5 0 3.197 1.793 2.384

mackay 5 20 2.78 1.789 4.482

sinus 50 -100 6.851 6.875 12.497

sinus 50 100 8.372 7.188 14.383

sinus 5 -20 2.108 2.125 3.326

sinus 5 0 2.742 2.028 1.992

sinus 5 20 2.125 2.011 2.984

3.2. ECG signal prediction

Fig. 2. The ECG record used for experimental analysis.

Fig. 3. Diagram of MSE dependency on default learning
rate µ during ECG prediction (5 epochs of training).

In this analysis a real measured ECG signal is used.
The signal is displayed in Fig. 2. The goal was one
sample ahead prediction. The criteria was to achieve
the lowest MSE of prediction. All three methods was
compared. As the input of the filter was used the
vector of 10 last samples and bias (bias=1). The
regularization term ε was set to 1 and the adaptive
weights was chosen randomly in range from -0.5 to
0.5. Because the initial adaptive weights are chosen
randomly at the beginning, it was done 100 simula-
tions for every tested setting of learning rate µ. The
length of used ECG signal was 2000 samples. First
half of data set was used for training and the second
half of data was used after that for testing (MSE was
calculated only on this part of the data).

The results of this analysis with 5 epochs of train-
ing are in Fig. 3 and the results of 10 epochs training
are in Fig. 4. From this results is possible to sug-
gest values for default learning rate µ to achieve best
performance.
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Fig. 4. Diagram of MSE dependency on default learning
rate µ during ECG prediction (10 epochs of training).

3.3. Convergence study on ECG signal

The optimal learning rates founded in previous sub-
section are used as settings for this convergence study.
The used signal was the previously used ECG record.
For every epoch of training 10 simulation runs was
made and average of it was used of the result to
decrease the influence of randomly chosen initial
weights. The results of this analysis are displayed
in Fig. 5. From the resultscan see, that plain NLMS
reach best performance during first epoch. The other
two methods reach much lower MSE. After eight
epochs the proposed methods with the online cen-
tering reach the similarly low value of MSE as the
method with offline z-scored data.

Fig. 5. The MSE of ECG prediction as a function
of training epoch with learning rate optimized for 5-10
epochs.

3.4. Computational complexity

The computational complexity of NLMS is O(n),
where n is amount of operations. It contains division,
so it has more operations than LMS, but the time

complexity is still linear (division with fixed length -
arbitrary precision is not used). In case of our modi-
fication, the time complexity is increased even more,
but again just with the division (just higher num-
ber of operations, but still linear time). So it does
not slow down the algorithm significantly. The speed
of algorithm was tested during the simulations. The
implementation was done in language Python with
numerical library Numpy. The NLMS with online in-
put centering consume 3.08x more time than the plain
NLMS during the simulations.

4. Conclusion

In this paper the modification of NLMS algorithm
was proposed to achieve better results during the real-
time adaptive filtering for real-life tasks. The method
is inspired be the commonly used offline data trans-
formations. As it is demonstrated in experimental
analysis, the method cannot achieve the performance
of filtering with offline prepared data, but the usage
of the proposed method is still significantly advanta-
geous in comparison with plain NLMS. The time com-
plexity of suggested algorithm is just about 3 times
higher than the one of the plain NLMS algorithm, so
it is still lower than other more sophisticated meth-
ods.

Nomenclature

~1 vector of all ones (−)
T transposition (−)
a data scale (1)
b data offset (1)
k discrete time index (1)
w vector of adaptive weights (−)
wt vector of adaptive weights for transformed in-

puts (−)
x input matrix (−)
xc centered input vector (−)
xt transformed input vector (−)
x̄ mean value of input vector (1)
y target variable (1)
ȳ mean value of target variable (1)
ỹ estimated variable (1)

σx standard deviation of input vector (1)
σy standard deviation of target variable (1)
µ learning rate (1)
η normalized learning rate (1)
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