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Abstract: The aim of this work is to implement finite difference method with Upper
Convected Maxwell constitution equation in MATLAB and provide mathematical model of
flow of collagen matter trough convergent and divergent planar channel. It was necessary
to transform solved geometry from non-orthogonal grid to orthogonal grid. Due to creep
flow conditions, velocity field had been carried out via power model. Central and upwind
finite difference scheme of first and second order had been used. This collagen flow model
is prepared to be used in the future for optimization of physical attributes of collagen
matter in cooperation with the laboratory experiment.
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1 Introduction

Although collagen is the most abundant mammalian protein accounting for 20-30% of
total body protein [1], has been widely used in many applications and has been carefully
studied, it’s rheological properties still remain unknown.
Collagen is widely used in medical applications as carrier for delivery of drug, protein
and gene. Collagen sponges are very useful as skin replacement, bone substitutes and
bioengineered tissues, such as blood vessels, heart valves and ligaments. [2].
Gelse et al. wrote "the name ’collagen’ is used as a generic term for proteins forming
a characteristic triple helix of three polypeptide chains". Twenty-six genetically distinct
types of collagen has been discovered. The most abundant group of collagens are repre-
sented by fibril-forming collagens (from type I to XI). Collagen I is the most plentiful and
best studied collagen, it forms more than 90% of the organic mass of bone and is major
collagen contained in skin, ligaments, cornea etc. [3].
In spite of knowing collagen so very well, knowledge about physical properties of collagen
matter is very shallow. It may have thixotrophic properties [4] and is visco-elastic [5].
Purpose of this work is to implement finite difference method with formulas proposed by
Zitny [5] in MATLAB and provide simulation of flow of collagen matter trough convergent
and divergent planar channel.
In the future this collagen flow model could be used for optimization of physical attributes
of collagen matter in cooperation with laboratory experiment.
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Figure 1 Experimental device - capillary viscosimetr (courtesy of Bc.
S. Solnář) [6].



Mathematical model should predict pressure behavior which can be compared with results
obtained on capillary viscosimetr with convergent and divergent planar channel. Exper-
imental device is currently under development at Department of Process Engineering.
Next step in the future will be to apply multi-objective optimization (for example PSO)
with the mathematical model as fitness function to find range for physical properties of
collagen matter.

2 Materials and methods

2.1 Governing equations

The collagen matter has visco-elastic behavior. This work is hugely influenced by work of
Zitny [5] and Pavlovec [7] who introduced geometry transformation formulas from non-
orthogonal geometry to orthogonal one, usage of Upper Convective Maxwell constitutive
equations and have created physical model this work is based on. Equation following in
this section are final formulas presented by Zitny [5]. On the figure 1 you can see basic
geometry of convergent divergent planar channel (capillary rheometr) with simple grid.
Fluid is flowing from left to right (parallel to x axis).
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Table 1 Transformation constants
straight convergent divergent

x0 0 LI L+ LI

β 0 −∆H
H0

∆H
H0

∆L LI L L

H0 H H H −∆H

System transformation from non-orthogonal to orthogonal:

ξ = x− x0
∆L (1)

η = y

H0

(
1 + β

x− x0
∆L

) (2)
ε = H0

∆L (3)

Continuity equation:
∇ · u = 0 (4)

Cauchy’s equation:
∂p

∂x
= ∂τxx

∂x
+ ∂τxy

∂y
(5) ∂p

∂y
= ∂τyy

∂y
+ ∂τyx

∂x
(6)



Viscosity approximation:

µ(II) = K

√2
(
∂ux
∂x

)2
+ 2

(
∂uy
∂y

)2
+
(
∂uy
∂x

+ ∂ux
∂y

)2
n−1

(7)

Due to creep flow power approximation model of velocity had been chosen. Because the
zero point of coordinate system had been placed in the bottom plane of rheometer (see
figure 1) different equations had to written for velocity in the bottom half of the rheometer
and in the top part of the rheometer.

um = V̇ (2n+ 1)
H0(n+ 1) (8)

ux = um
1 + βξ

(1− (1− 2η)
n+1

n ), η < 0.5 (9)

ux = um
1 + βξ

(1− (2η − 1)
n+1

n ), η > 0.5 (10)

uy = εβum
1 + βξ

η(1− (1− 2η)
n+1

n ), η < 0.5 (11)

uy = εβum
1 + βξ

η(1− (2η − 1)
n+1

n ), η > 0.5 (12)

Constitutive equations:
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µ(II)
(
∂ux
∂y

+ ∂uy
∂x

)
= τxy + µ(II)

G

(
ux
∆L

(
∂τxy
∂ξ
− ηβ

(1 + βξ)
∂τxy
∂η

)
+ uy

∆Lε(1 + βξ)
∂τxy
∂η
−
∂uy
∂x

τxx −
∂ux
∂y

τyy

)
(15)

2.2 Border conditions

Bottom of the rheometer:

τxx = 2µ(II)2
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∂y

)2
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∂y
(18)



Top of the rheometer:
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Entrance conditions:

τxx = 2µ(II)2

G

(
∂ux
∂y

)2
(20) τyy = 0 (21) τxy = µ(II)∂ux

∂y
(22)

3 Finite difference method

For solving formulas (13) (14) and (15) finite difference method (FDM) had been chosen.
FDM is relatively easy to implement. First order approximation formulas were used in
"approximation approach" (see later) to solve column j = 2, j = ny − 1 and row i = 2,
everything else (except border) was carried out by second order approximation.
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xx
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In the first approach we tried to approximate formula (27) just by central difference,
but results behaved very strangely. Afterwards backward or forward scheme was used,
depending on uy orientation, which gave much more reasonable numbers. Direction of uy
can not be neglected.
Formulas (23) could be used in explicit or implicit way. Both approaches had been tried.

3.1 Implicit scheme

Implicit scheme has larger round-off errors compared to explicit scheme, is more difficult
to implement and costs more resources. However predictor is not necessary and implicit
scheme is always stable. If we use approximation formulas (23-27) on constitutive equa-
tions (13-15) it can be expressed as follows:

A = µux
G∆L∆ξ ,

U = − 2µ
G
,

B = |uy|µ
∆η∆Lε(1 + βξ)G,

C = µuxηβ

G∆L(1 + βξ)2∆η

D = (uy − |uy|)
Gε∆L(1 + βξ)2∆η

E = (uy + |uy|)
Gε∆L(1 + βξ)2∆η



τ i,jxx (1 + A+B + U
∂ux
∂x

) + (D − C)τ i,j+1
xx − (E + C)τ i,j−1

xx + Uτ i,jxy = 2µ(II)∂ux
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∂x

τ i,jxx + U
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This can be written into following matrix:

1 + A+B + U ∂ux
∂x 0 ∂ux

∂y (D − C) 0 0 0 0 0
0 1 + A+B + U

∂uy

∂y
∂uy
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...
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3.2 Explicit approximation of constitutive equations

Explicit method for equations ((13)-(15)) has been carried out. It uses following predictor introduced by Zitny [5]:

τ i,jxx

(
1 + µ(II)

G

(
ux

∆L∆ξ − 2∂ux
∂x

))
= µ(II)

G

(
ux

∆L∆ξ τ
i−1,j
xx + 2∂ux

∂y
τ i,jxy

)
+ 2µ(II)∂ux

∂x
(32)

τ i,jyy

(
1 + µ(II)

G

(
ux

∆L∆ξ − 2∂uy
∂y

))
= µ(II)

G

ux
∆L∆ξ τ

i−1,j
yy + 2µ(II)∂ux

∂x
(33)

τ i,jxy

(
1 + µ(II)

G

ux
∆L∆ξ

)
= µ(II)

G

ux
∆L∆ξ τ

i−1,j
xy + 2µ(II)

(
∂ux
∂x

+ ∂uy
∂y

)
(34)

Final discretization could be written in this manner:
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There are two implemented variants of explicit model. The simplest way how to explain it
is in figure 3. The first variant ("approximation" approach) where the second column and
last-but-one column points (red) are obtained from first order approximation and second
variant ("predictor approach"), where same points (red) are taken directly from predictor.
Under these conditions, one might expect the first approach to find the solution faster,
but the opposite behavior has been observed.
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Figure 3 Mesh used for calculation. Red points have been approxi-
mated by neighbours or taken directly from predictor.

Then pressure can be calculated from stresses:

p =
(
τ i,jxx − τ i−1,j

xx

ξ
− ηβ

(1 + βξ)
τ i,j+1
xx − τ i,j+1

xx τ i,j+1
xx τ i,j+1
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xy

∆ξ + 1− (εηβ)2

ε(1 + βξ) + τ i,j+1
xy − τ i,j−1

xy

3∆η

)
∆ξ + pi−1,j (38)

3.3 MATLAB implementation

FDM code has been implemented in MATLAB in two main codes, main.m and segment.m.
Code main.m is responsible for input parameters, geometry of segments, starting segment
code, transporting border conditions from one segment to another and viewing/printing
the results. Code segment.m is implementing formulas for calculation of velocities, their
derivations, viscosity, predictor, stresses, residue and pressure.
To speed up the code, parts of code were written in vectorized form. Bottlenecks were
found using profiler function [8]. The most time consuming (more than 60% of segment.m)
is residue calculation.



3.4 Postprocessing - transformation of results back to non-orthogonal system

There is a concern to transform calculated data (pressure, velocities etc.) back to non-
orthogonal system. There have been several approaches how to do it. Firstly, we tried
to fit each row of result matrix (where sensible) with polynomial and then scale it to
new length. Fitting with polynomial had been done by MATLAB function polyfit. For
example the results of fitting p(10,:) (pressure matrix in divergent segment on row 10)
without scaling are in figure 4.
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Figure 4 First approach. Approximation of pressure by polynomial.

However this approach was not very successful, it would be necessary to find better fitting
function.
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Figure 5 Transformation from orthogonal to nonorthogonal grid in divergent segment using ’ImWarp’.

In so far final approach MATLAB image transformation instruments has been used, specif-
ically ImWarp to stretch each row of the original by aspect ratio. Produced matrix is
naturally larger to preserve any important details from the original.



4 Results

Although implicit scheme was introduced in FDM chapter, implicit approximation seems
to produce matrices which are badly scaled and singular to working precision. Another
disadvantage compared with explicit method are higher round-off errors.

4.1 Explicit scheme results

Residue

First difference to observe between "approximation" and "predictor" approach are residue
(see figure 6). Residue are defined by following equations:

R0
τij

= τk=0
ij (39)

Rkτij
= τkij − τk−1

ij (40)

then residues are arithmetic mean of the whole Rkτij
matrix

residuekij = mean(Rkτij
) (41)

Same principle had been applied to pressure residue.
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Figure 6 Residue for "approximation" approach and "predictor" approach.

Pressure

The main goal was to find the pressure in convergent divergent planar channel. Pressure
can be compared in the future with experimental data. There exist significant peak of
pressure in the middle of planar channel, parallel to ξ-axis. It may be cost by the viscosity
model or velocity field carried out by power model.
There is a difference between pressure field obtained by "approximation" and "predictor"
approach, (see figure 7). This difference occurs on the top wall in the divergent segment
and is around 700 Pa, which is less than 0.1% As one can see in figure 6, approach using
on border first approximation is not converging, so produced stress field is different ans
therefore must be pressure also different.
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Figure 7 Pressure for "approximation" and "predictor" approach.
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Figure 8 Pressure difference between "approximation" and "predic-
tor" approach.

5 Conclusion

Results show significant peak of pressure in the middle of the channel. I have no expla-
nation for this kind of behavior.
Although one would suspect second-order differences to converge faster, the opposite is
true, they will quickly begin oscillating around 10−5 residues. This produces different
stresses which cause difference between pressure calculated by first and second order
differences.
It would be interesting to compare results obtained in this work with results obtained
by some other CFD software. There are two widely used, well documented software
solutions, which can be used for visco-elastic flow, OpenFoam and PolyFlow. OpenFoam
is open-source, white-box software and it was selected to be applied for described problem



simulation. Parametric mesh for OpenFoam had been created manually in BlockMeshDict
and transformed to mesh using BlockMesh. This work is ready for comparison with
laboratory experiment.
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List of used symbols

L length of segment (m)
LI length of 1.st segment (m)
H height of segment (m)
H0 initial height (m)
∆H difference of height (m)
∆L current length of segment (m)
ξ dimensionless length (ξ-axis) (1)
η dimensionless height (η-axis) (1)
ε ratio between initial height and length of segment (1)
β contraction ratio (1)
K flow consistency index (Pa·sn)
n flow behavior index (1)
um mean velocity (m/s)
u velocity (m/s)
p pressure (Pa)
τij ij component of stress tensor (Pa)
G Shear modulus (Pa)
µ dynamic viscosity (Pa·s)
ui velocity in i direction (m/s )
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