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Abstract 
Energy industry is highly capital-intensive with a demand for complex plants, equipment and machinery. Traditional deterministic 
DCF method used for their valuation has long been challenged for undervaluation and gradually complemented by real options anal-
ysis enabling to embrace other determinants of value such as flexibility and uncertainty and incorporate them into the project value 
calculation process. Multiple valuation methods have emerged and continue emerging as reaction to complexness and distinction of 
the real asset class compared to its financial counterpart. These can be divided into contingent claims, dynamic programming and 
simulation methods. Each of the methods uses different approach and it is based on different assumptions. This paper brings compar-
ison of the methods in context of energy industry and it should provide a practitioner with a guide for the selection process of an op-
timal valuation method. 
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1. Capital investment appraisal in Ener-
getics 
Energetics as one of the most capital-intensive industries 
demands significant capital investments. Distillation col-
umns, turbines, storages or pipelines can be mentioned as 
typical pieces of equipment utilized in the industry.   
Especially due to the deregulation of the energy market 
and transition towards renewable sources of energy, there 
has been an increase in the level of uncertainty capital in-
vestments must face. Main sources of risk include market 
risk stemming from volatility of commodity and carbon 
prices, technology evolution and changes in policy. These 
changes have to be reflected in the methods used for val-
uation of capital investment projects on assets conversing 
commodities utilized in energetics. Based on the type of 
conversion they can be categorized as follows [1]: 

1. Production of commodity: this group includes 
assets such as oil drilling platforms or facilities 
necessary for opening a mine. 

2. Physical transformation of a commodity: assets 
transforming one commodity into another such 
as oil refinery or gas-fired power plant.  

3. Change in availability of a commodity: depend-
ing on whether we talk about a change in time or 
a change in location we can include assets such 
as a storage or a pipeline, respectively. 

1.1. Comparison of ROA and DCF 

Large capital investment projects have been traditionally 
appraised with use of deterministic DCF method but ROA 
gains an increasing popularity regardless of the fact that 
in many cases only as a conceptual framework [2]. 

ROA outweighs DCF especially in situations where 
projects possess high flexibility and uncertainty. The lat-

ter attribute has recently been driven mainly by deregula-
tion of energy sector and more rapid spread of renewable 
energy sources, both resulting in an increase of market 
risks [3]. 

Traditional DCF models struggle to cope with this in-
crease in uncertainty and thus ROA comes into the picture 
as a useful alternative for capital investment appraisal. 
ROA also proves to be a favourable method when flexi-
bility is present. 

Kozlova concludes in her review focusing on ROA 
that the option to defer is the most often used real option, 
thus determination of optimal timing plays a key role in 
ROA in energetics. If a decision-maker possess such flex-
ibility and different scenarios can be modelled, then in 
contrast to DCF method ROA can increase project value 
[4]. 

Schachter and Mancarella provide main drawbacks of 
DCF methods as follows [5]: 

1. They assume investments are reversable but in 
fact most investments in the field of energetics 
are irreversible, especially due to their capital in-
tensivity. 

2. Decisions are fixed at the outset of the invest-
ment process. In other words, they assume a pro-
ject cannot be modified during implementation 
process. 

3. Inappropriate valuation of risk in a discount rate.  

1.2. ROA in energetics 

Due to the specifics of energy commodity prices including 
properties such as mean-reversion and jumps, the practi-
tioners need to pay an increased attention to assumptions 
of the models they will use for capital investment ap-
praisal in order to provide realistic valuation. 
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For example, the jumps can cause that the probability dis-
tribution of returns has fat tails. This causes challenge to 
those models where normal distribution is assumed. 

Selection of a valuation model is of major importance 
as this choice defines what underlying process is used for 
modelling of the underlying asset which reversely will de-
fine the way in which the derivative (real option) will be 
valued. For this reason, when selecting a particular valua-
tion model, it is necessary to evaluate whether the model 
of the underlying asset matches empirical dynamics of 
the uncertainty variable 

2. Analytical and numerical methods 
The methods deployed for real options valuation have 
evolved from the methods of their financial counterpart 
where the models were typically derived with use of as-
sets such as stocks. This evolution has caused that the as-
sumptions bound to the pricing models do not always 
match the actual properties of real assets. In order to be 
able to select a valuation method best suiting the valuation 
case, it is necessary to understand these assumptions and 
be able to attach them to the valuation result in a way un-
derstandable by the decision-maker (management). 
The real-options valuation models can be divided into two 
groups: analytical methods and numerical methods. 

2.1. Analytical methods 

Also referred to as closed-form solutions use mathemati-
cal apparat including calculus and trigonometry [6]. 

The stochastic process of the underlying asset is con-
tinuous [7].  

Computational time is usually low as closed-form so-
lution/formula exists. The use of the closed-form solution 
is bound to acceptance of assumptions which may not al-
ways match the real-world assumptions. The best-known 
model of this group is the Black-Scholes model which is 
typically used for pricing the European options. 
It is important to mention that an analytic solution for 
American options does not exist [8]. 

2.2. Numerical methods 

In situations where the mismatch between assumptions of 
analytical methods and the real-world assumptions is sig-
nificant enough to undermine credibility of the results of 
analytical solution, numerical methods can be a better op-
tion. 
These methods can modify analytical solution or use sim-
ulations in order to approximate the solution [8]. 

Compared to analytical methods, the stochastic pro-
cess is discrete [7].  

3. Real options valuation methods 
Another well used way of categorization of real-options 
valuation methods divides the methods into three groups: 
contingent claims, dynamic programming and simulation 
methods. 

3.1. Contingent claims (CC) 

The approach developed by Black and Scholes in 1973 
uses the risk neutral valuation as its main premise [9]. 

This states that if the market trading the underlying as-
set is effective and no arbitrage is possible then we can 
create a riskless portfolio earning a risk-free interest rate.  
The fact that the asset comparable to the underlying asset 
is traded, we can derive the key parameters (volatility, 
spot price, exercise price, time to expiration, risk-free in-
terest rate) from them and use them as inputs for the 
model. However, this is usually not the case in the field of 
real options. For example, a real asset such as a copper 
mine is not typically traded [7]. 

Risk preferences of investors are irrelevant here. The 
risk-free interest rate is used for discounting future cash 
flows in order to get the present option value. This ap-
proach can be also applied in the real world where inves-
tors can require an interest rate higher than the risk-free 
interest rate because of their risk preferences. This is 
caused by the fact that the discount rate increases together 
with the increased risk preferences, thus bringing the pre-
sent value back to the level expected in the risk neutral 
world [8]. 

This approach has many opponents in the real options 
field arguing the market is often incomplete, thus the risk-
neutral measure cannot be applied. They recommend 
a use of alternative methods such as the dynamic pro-
gramming instead.   

The best-known method of the CC group is the Black-
Scholes method. 

3.1.1. Black-Scholes model (BSM) 

The Black-Scholes model (BSM), sometimes also called 
the Black-Scholes-Merton model, is an analytical method 
with a closed-form solution. This was derived with use of 
Itô's lemma which states that if there is a variable follow-
ing a stochastic process, we can construct a function of 
this variable in such a way that the function also follows 
the same stochastic process. The derived differential of 
the function of the stochastic process represents a key el-
ement of financial derivatives valuation. Full derivation 
of the Black-Scholes-Merton differential equation from 
Itô's lemma can be found in Hull [8]. The differential 
equation can be rewritten into a closed-form solution 
which simplifies adoption of option theory calculus by 
practitioners.  

 𝑐 = 	𝑆!𝑁(𝑑") − 𝐾𝑒#$(&#!)𝑁(𝑑() (1) 

 𝑑" =	
)*+!"#,-($-.

$/()(&#!)

.√&#!
 (2) 

 𝑑( =	𝑑" − 𝜎√𝑇 − 𝑡 (3) 

BSM assumes the percentage change of underlying 
stock price has a normal distribution which implies that 
natural logarithm of future stock price is normally distrib-
uted, in other words the stock price is log-normally dis-
tributed [8]. 
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While this might be the case for stocks, commodity spot 
prices have usually fat tails meaning outliers are present 
more frequent than in situation of Gaussian probability 
density function. Cartea and Figueroa perform a normality 
test for electricity spot prices in the UK market with 
the result confirming significant diversion from normality 
[10]. 

Use of GBM for projects where outliers are strong de-
terminants of project value can then cause undervaluation. 
An example of such a situation can be a project on price 
arbitrage where a magnitude of a spread between prices 
during peak and off-peak periods is the source of cash in-
flows. 

Another important assumption of BSM is that 
the stock (underlying asset) follows the Geometric 
Brownian Motion (GBM) which is a Brownian motion 
with a drift: 

 𝑑𝑆! = 	𝜇𝑆!𝑑𝑡 + 𝜎𝑆!𝑑𝑤! (4) 

This means that when using BSM for ROA we must be 
aware of the fact that we expect the underlying asset fol-
lows GBM. This can be perceived as a significantly strong 
assumption for commodity spot prices, especially when it 
comes to certain commodities such as power which can-
not be even perceived as an asset because it cannot be 
stored. The assumption of GBM contradicts with some 
typical properties of commodities such as seasonality 
which causes spikes in the price followed by a return to 
the mean.  
Besides mean reversion, Ronn brings other empirical 
properties of commodities [11]: 

1. Seasonality in both prices and volatilities in ac-
cordance to the season of the year. 

2. Backwardation and contango in futures prices. 
3. Limited correlation among futures prices. 
4. Short-dated price volatility is greater than long-

dated price volatility. 
Seasonality is typical especially for spot commodity mar-
kets. We can observe several different seasonality at-
tributable to daily, weekly and yearly cycles in the elec-
tricity spot market. This seasonality can be translated into 
autocorrelation of returns which is in contradiction to one 
of the assumptions of BSM expecting independently dis-
tributed returns [10]. 

Despite its limitation, GBM is widely used for model-
ling forward prices in energetics [11] 
Thus, when selecting BSM we suppose the underlying as-
set has no seasonality, there is no mean-reversion process 
present and the mean is constant over time. We also as-
sume that volatility evolves with the square root of time 
and it is homoscedastic [11]. 

One solution of how to overcome the above-men-
tioned limitations of GBM is to use the Generalised 
Black-Scholes model with generalised risk-neutral pro-
cess which is more realistic as the strict requirement for 
homoscedasticity is relaxed. Heteroscedasticity together 
with introduction dividends enables richer and more real-
istic properties of the price. Original BSM expects stocks 
bring no dividends.  By including dividends in the gener-
alised BSM, we can add convenience yield 𝑦(𝑆! , 𝑡), where 
𝑆! is spot price at time 𝑡, and thus extend the model with 

mean-reverting process. Dividends 𝑦 higher than risk-
neutral interest rate 𝑟1 result in a negative trend in a spot 
price, thus 𝑆! converges back to its central tendency. On 
the other hand if 𝑆! is below its mean, dividends y have to 
be lower than the risk-neutral interest rate 𝑟1, in order 𝑆! 
is pushed back up to its mean [5].  

Some other modifications of BSM introducing mean-
reversion and jumps have been developed. Merton (1997) 
introduced BSM with GBM extended with lognormal 
jumps and Clewlow and Strickland (2000) brough exten-
sion with mean-reversion. However these modifications 
does not provide typically closed-form solutions [10]. 

Another limitation is the fact that BSM can work with 
only one uncertainty factor but in real lime projects usu-
ally face more sources of uncertainty. 

Further, BSM expects the underlying asset to be trad-
able in order arbitrage can take place. This allows for risk-
neutral state with a risk-free interest rate. This is usually 
not the case with real options as the real assets are hardly 
tradable. Another problem can be seen in the fact that not 
all energy commodities are assets. Typical example is 
power which is not an asset but a tradable goods because 
it cannot be stored. To overcome this property, Ronn in-
troduces the concept of the price of risk which facilitates 
transition of the non-asset price dynamics of power into 
the risk-neutral price dynamics typical for assets [8].  

It must be also underlined that Black-Scholes formula 
can be used only for European type of options which is 
a significant limitation for real options where decisions 
typically need to be taken during the life of the real option. 
Black-Scholes formula can be used for pricing of Ameri-
can call option in a limited way but due to the limitation 
this will not be consider any further in the paper [8]. 

3.2. Dynamic programming (DP) 

DP was developed as a management tool by Bellman and 
others in 1950’s. DP perceives the investment process as 
a chain of interconnected decision points. It uses the Ham-
iltion-Jacobi-Bellman equation that is solved by backward 
induction. The interest rate used is exogenous and con-
stant reflecting individual risk preferences [9].  

DP can deliver similar results as CC. Insley and Wir-
janto present conditions that must hold in order CC and 
DP generate the same results [9]. 

Dynamic programming typically uses partial differen-
tial equation (PDE) which adds complexity to the problem 
being solved [6]. Complexity is a well-known barrier for 
adoption of the ROA by practitioners. Some authors such 
as Ampofo find complexity as the main barrier for adop-
tion of ROA by practitioners. For that reason, Ampofo 
recommends to develop easier adoptable but still realistic 
models in order to transmit the value of ROA from aca-
demic environment to practitioners [12].  
Main difference between CC and DP can be seen in 
the choice of the discount factor. Whereas CC use a risk-
free interest rate, DP perceives a risk rate reflecting op-
portunity costs as an ideal discount factor. However, the 
adjusted interest rate is fixed for the whole length of a pro-
ject which is a drawback compared to CC [6]. Still, Wang 
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highlights DP as a preferable method for incomplete fi-
nancial markets where risk-neutral valuation cannot be ef-
fectively deployed [13]. On the other hand, Insley and 
Wirjanto contradict this view by comparing a constant 
risk adjusted discount rate of DP with the variable risk-
free discount rate of CC and comes to the conclusion that 
fixing the discount rate implies a constant volatility which 
is restrictive in such a way that CC should be a preferable 
method for real options [9]. Schachter and Mancarella do 
not share this view, simply because they consider unreal-
istic to hold the assumptions necessary for using a risk-
free interest rate, specifically the one that the underlying 
asset must be tradable, in the field of real assets. Nonethe-
less, they oppose the idea of a constant discount factor at 
the same time [5].  

At this point, we can conclude that it does not seem 
possible to deduce, based on the sources used, which of 
the two approaches is the more convenient one for real 
options. 

3.2.1. Lattice model - binomial model 

Model developed by Cox, Ross and Rubinestein. 
It is used mostly for valuing American options but it can 
be used for European options as well [8]. 

The underlying asset follows a binomial distribution. 
At each time node the asset price can either move up with 
a probability 𝑝 and have value 𝑓2 or move down with 
a probability 1 − 𝑝 and have value 𝑓3. The present value 
𝑓 of a two-step binomial tree can be then calculated as 
discounted sum of future option values in the upper and 
lower state [8]: 

 𝑓! =	𝑒#$&[𝑝𝑓2 +	(1 − 𝑝)𝑓3] (5) 

The model is discrete as opposed to continuous BSM. 
This can be perceived for the purpose of ROA in energet-
ics, where stage approach is typical for capital invest-
ments, positive. 
The value is calculated at the predefined nods which can 
correspond to project milestones and thus well track 
the project life.  

As the distance between two time points gets smaller, 
the resulting option price converges to a price calculated 
by the Black-Scholes-Merton model [8]. 

Lattice models better reflect the idea of real options. 
The option can be exercised at any nod and not as late as 
at the expiration date as is the case of Black-Scholes 
model. They are also easier to understand due to their 
graphical representation.  

Lattices do not necessarily have to be binomial. Trino-
mial or multinomial lattices can be applied. Nonetheless 
the number of dimensions will rapidly increase complex-
ity of the lattice.  

Even a binomial lattice can become difficult to solve 
as its complexity is an exponential function of the number 
of uncertainties and time steps [5]. 
The binomial model, the same as BSM, is based on risk-
neutral valuation which can be described as a possibility 
to hedge the position by creating a portfolio including 
the underlying asset. This assumes, besides other, that 
the underlying asset is tradable [8]. 

In regards to other assumptions of the binomial model, 
the underlying asset is assumed to have a constant volatil-
ity. As already mentioned above, commodity spot prices 
typically evince heteroscedasticity, which again contra-
dicts such an assumption.  

For example, Schachter and Mancarella explain that 
due to the assumption of homoscedasticity, the binomial 
model provides correct results only at the nodes closest to 
the beginning and the end of the lattice [5]. 

Despite the shortcomings, the binomial model is a val-
uation method widely used in ROA in energetics [13].   

3.3. Simulation models 

3.3.1. Monte-Carlo simulation (MSC) 

MCS is a numerical method based on simulating n possi-
ble paths of the underlying asset. As a next step, option 
value 𝑐4 for each of the paths is calculated. Final option 
price 𝑐̂ is a simple average of these values discounted to 
present value [14]: 

 𝑐̂ = 	 [∑ 𝑐4∗/𝑛*
46" ]𝑒#$(&#!) (6) 

In contrast to BSM and lattices, more uncertainties can 
be modelled at the same time.  

Lattices can also model more than one uncertainty but 
this rapidly increase complexity and for that reason will 
this model not be considered the best choice for projects 
with multiple sources of uncertainty. Hull presents this 
characteristic as one of the two main reasons for the use 
of MCS. The other reason is modelling of the whole un-
derlying asset trajectory which can be used for path-de-
pendent options [8].  

Another advantage, compared to the previous models, 
is the possibility of modelling stochastic processes with-
out the limitation on probability distribution. This means 
that the probability distribution of the underlying asset 
does not have to be limited only to the normal or log-nor-
mal distribution [5]. Relaxing this condition, stochastic 
processes followed by commodity prices can be modelled 
more precisely due the capturing properties such as mean-
reversion and jumps. This enables a broad use in the field 
of energetics [13]. For example, Kroniger and Madlener 
use MCS for valuation of hydrogen storage. With use of 
MCS, uncertainty variables such as wind speed, electric-
ity spot price and call of minute reserve capacity are sim-
ulated at the same time [15]. Similarly,Tian et al. simulate 
investment costs and spot electricity price and carbon 
price in order to value a photovoltaic power plant [16].  

Huimin uses MCS to calculate volatility of NPV of 
a project on oil drilling project. This volatility is then 
an input for BSM to calculate an option value [17]. Simi-
larly Wu and Lin use MCS to determine volatility and re-
sulting value of coal capacity NPV in China [18].  

MCS as a simulation method can be combined with 
other methods such as dynamic programming [13]. This 
is well justifiable because MCS is forward-working 
method but in order to determine an optimal timing of in-
vestment one needs to proceed backwards. This is also 
a reason why a standalone MCS method cannot value 
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American options and the combination of MCS as a for-
ward-working method with a backward-working method 
must be considered [5]. 

Special case is the Least Squares Monte Carlo 
(LSMC) model which can work both forward and back-
ward and thus in order to determine optimal timing does 
not need to be combined with another model [8]. This 
means it can be used for valuing for American options and 
timing real options [19]. 

Zhu, Zhang and Fan use LSMC to simulate paths of 
the value of a oversees oil project. The process starts back-
wards in order to define exercise decision at each time 
point of the discrete model and then proceeds forwards up 
to the exercise time point in order to determine the aban-
don value [20].  

Nadarajah, Margot and Secomandi use LSMC for val-
uation of crude oil swing and natural gas storage options 
[21].  

4. Conclusion 
The paper focused on the most popular real options valu-
ation methods in the context of energy sector. For an eas-
ier comparison, these are listed in the table 1.   

Table 1. Comparison of real options valuation methods 

Method Time Options Prob. distr. 

BSM Continuous Eur Log-normal 

Binomial Discrete Eur/Ame/Exo Binomial 

PDE Continuous Eur/Ame/Exo Not restricted 

MCS/LSMC Discrete Eur/Ame/Exo Not restricted 
 

It is not possible to conclude with certainty which of 
the methods can be recommended as the most suitable 
method for the purpose of real options analysis in the field 
of energetics. Instead, one needs to understand the as-
sumptions the method is based on and subsequently select 
a method which best matches the assumptions with 
the specific valuation case. 

While BSM provides a closed-form solution which 
significantly decrease the calculation time, the fact that 
the underlying asset has log-normal distribution is a way 
too strong assumption in energetics. Also, the closed-form 
solution (formula) has to be fully accepted by the deci-
sion-makers as this can be perceived as a black-box by 
many. It should also be mentioned that the most popular 
real option is the timing option. This option can be hardly 
valued as European option. 

The binomial model can provide a better-suited alter-
native. The graphical representation of nods correspond-
ing to milestones in a project can be easier accepted by 
decision-makers. Positive is also the fact that it can value 
American options. The same as BSM, the binomial model 
is based on risk-neutral valuation. This is often negatively 
addressed due to the fact the real assets can be in general 
traded only in a limited way. Also, the risk-free interest 
rate and normal distribution are often negatively per-
ceived properties of this valuation model. 

The latter mentioned property is overcome in MCS 
which allows for modelling other probability distribu-
tions. Positive is also the ability of modelling several 
sources of uncertainties at once, thus better matching the 
model with real world where the real asset value is rarely 
determined by only one source of uncertainty. Yet this re-
sults in an increase in computing time. MCS can be com-
bined with other valuation methods and due to the fact, 
that the basic MCS is a forward-looking method, it can be 
even necessary. The most significant limitation of the 
method is large computation time which must be consid-
ered when making decision about the most suitable valu-
ation method. The robustness of MCS can cause that this 
method can be considered rather as the last resort when 
lighter methods cannot be used. 

List of used symbols 
𝑐4 option value of i-th path 
𝑐̂ final option price 
𝑑( variable 
𝑓3 option value in the down state 
𝑓2 option value in the up state 
𝐾 strike price 
𝑁 cumulative normal distribution 
𝑝 risk-neutral probability 
𝑟 interest free rate 
𝑆! spot price at time t 
𝑡 time 
T time to expiration 

𝜇	 mean	
𝜎 annualized volatility 
𝜔! Wiener process 
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