Charakteristiky letounu kategorie CS-23 s asymetrickým tahem

Libuše Hladíková

ČVUT v Praze, Fakulta strojní, Ústav letadlové techniky, Technická 4, 166 07 Praha 6, Česká republika

Abstrakt

Tato práce je zaměřena na výpočet letových výkonů letounu s nesymetrickými pohonnými jednotkami a na určení provozního omezení letounu způsobeného rozdílným tahem pohonných jednotek. Létající laboratoří pro letovou zkoušku je letoun Beechcraft King Air 350. Jde o letoun se dvěma turbovrtulovými motory, kde je jedna pohonná jednotka nahrazena výkonnější experimentální pohonnou jednotkou. Pro výpočet původní pohonné jednotky P&W PT-6A-60A se využívá teorie ideálního propulzoru. Výpočet experimentální pohonné jednotky byl proveden v závislosti na matematickém modelu odpovídající výkonové třídě motoru GE Catalyst.

Klíčová slova: letové výkony; nesymetrické pohonné jednotky; výpočet tahu motoru; létající laboratoř; experimentální pohonná jednotka; teorie ideálního propulzoru; provozní omezení letounu

1. Beechcraft King Air 350

Letoun Beechcraft King Air 350 je dolnoplošné turbovrtulové letadlo s plně vetknutým nosníkem, které má ocasní plochy uspořádané do písmene T(vodorovná ocasní plocha je oproti klasické koncepci posunutá na vrchol svislé ocasní plochy). Letoun spadá do kategorie Business and General Aviation, v České republice kategorie všeobecného letectví.

Beechcraft King Air 350 je standardně poháněn dvěma motory Pratt and Whitney PT-6A-60A. Tyto motory disponují vzletovým výkonem 1 050 shp. V kombinaci s těmito motory se využívá čtyřlistá stavitelná vrtule Hartzell.

1.1. Parametry letounu Beechcraft King Air 350

V následujících tabulkách jsou uvedené základní údaje o letounu Beechcraft King Air 350. Údaje byly získány z oficiálních webových stránek Beechcraft Textron Aviation a z Typového Certifikátu letounu.

Tabulka 1. Základní rozměry letounu[1]

ROZMĚRY				
Délka	46 ft 8 in	14,22 m		
Výška	14 ft 4 in	4,37 m		
Rozpětí křídla	57 ft 11 in	17,65 m		
Plocha křídla	310 sq ft	28,8 m ²		

Tabulka 2. Hmotnosti letounu[1]

HMOTNOSTI				
Maximální vzletová hmotnost	15 000 lb	6 804 kg		
Maximální přistávací hmotnost	15 000 lb	6 804 kg		
Použitelná hmotnost paliva	3 611 lb	1 638 kg		
Provozní hmotnost	9 955 lb	4 516 kg		

Tabulka 3. Výkony letounu[1]

VÝKONY				
Maximální provozní rychlost	260 KIAS	481,5 km/h		
Maximální dolet	1 806 NM	3 345 km		
Maximální provozní výška	35 000 ft	10 668 m		
Maximální rychlost stoupání	2 731 fpm	832 mpm		
Pádová rychlost	82 KCAS	152 km/h		

1.2. Pohonné jednotky

1.2.1. Motor Pratt and Whitney PT-6A-60A

Pratt and Whitney PT-6A-60A je turbovrtulový motor disponující vzletovým výkonem 1 050 shp (zhruba 783 kW). Jedná se o motor se dvěma protiběžnými hřídelemi, která má dvě turbíny. Jedna turbína je volná, pohání vrtuli letounu přes reduktor a druhá pohání kompresor, který se skládá ze čtyř stupňů (tři axiální a jeden radiální).

Motor se používá v kombinaci se čtyřlistou vrtulí od společnosti Hartzell Propeller Inc. Jde o vrtuli stálých otáček s možností reverzace. Zároveň se při snížení otáček automaticky praporuje.

Obr. 2. Pratt and Whitney PT-6A-60A[3]

1.2.2. Motor GE Catalyst ATP(Advanced Turboprop)

GE Catalyst je turbovrtulovým motorem, který by měl mít účinnost až o 20% vyšší než konkurence. Velikostně se GE Catalyst pohybuje ve stejné kategorii jako motory P&W PT6. Při výrobě se vychází z technologií, které se využívají u velkých proudových motorů a motorů nadzvukových letounů. Zároveň se v jeho výrobě využívá 3D tisku, díky čemuž se značně snížil počet komponentů motoru.

Motor disponuje výkonem 1 300 shp (zhruba 969,4 kW). Jde o motor s pětistupňovým kompresorem (čtyři stupně axiální, jeden radiální). Pro výrobu kompresoru byl použit titan, což napomáhá odlehčení motoru, zvýšení výkonu a efektivity při zachování běžných rozměrů. [5]

Obr. 3. GE Catalyst ATP[4]

Výpočet tahu referenční pohonné jednotky

Tato část bakalářské práce je zaměřena na získání tahové křivky pro referenční pohonnou jednotku. V tomto případě je jako referenční pohonná jednotka použit motor Walter M601 E v kombinaci s vrtulí Avia V510. Avia V510 je pětilistá vrtule, regulovaná na konstantní otáčky. Pro tento výpočet jsou použity diagramy aerodynamické charakteristiky vrtule Avia V510.

Aby bylo možné vypočítat tah, je nejprve nutné zjistit aerodynamickou charakteristiku vrtule. Nezbytné je zjistit účinnost v závislosti na rychlosti letu a na rychlostním poměru λ .

V následující tabulce jsou charakteristiky motoru a vrtule potřebné pro výpočet.

Tabulka 4. Parametry motoru Walter M601 a vrtule Avia V510

	Značka	Hodnota	Jednotka
Maximální			
absorbovaný výkon na	P_{v}	560 000	W
max. otáčkách			
Rozsah regulovaných	12	1 500 -	min-1
otáček	п	2 080	11111
Průměr vrtule	D	2,3	m
Hustota vzduchu (pro	0	1 225	ka/m ³
0 m MSA)	ρ	1,225	Kg/III

Ze zadaných parametrů se nejprve určí součinitel výkonu vrtule c_p , který je díky vrtuli V510, regulované na konstantní otáčky, neměnný. V tomto případě se vyjádří součinitel c_p pro maximální otáčky motoru $n = 2\ 080\ min^{-1} = 34,67\ s^{-1}$. Pro zmíněný koeficient platí vztah:

$$c_p = \frac{P_v}{\rho \cdot n^3 \cdot D_{V510}^5} = \frac{560\ 000}{1,225 \cdot 34,67^3 \cdot 2,3^5}$$
(1)
= **0**,17048

Po dosazení hodnot v základních jednotkách z tabulky 4 nám součinitel c_p vyjde roven 0,1704812042. V závislosti na získané hodnotě c_p se dají z grafu aerodynamické charakteristiky vrtule $c_p(\lambda, \varphi)$ odečíst potřebné hodnoty. Pro každé nastavení úhlu vrtule φ lze odečíst odpovídající hodnotu rychlostního poměru vrtule λ .

Odečtené hodnoty jsou v následující tabulce:

Tabulka 5. Hodnoty získané z grafu $c_p(\lambda, \varphi)$

Hodnoty odečtené z grafu $c_p(\lambda, \phi)$			
Úhel nastavení φ [°]	Rychlostní poměr λ		
20	0,45		
25	0,94		
30	1,29		
35	1,70		

Výše zobrazeným hodnotám odpovídá v grafu $c_t(\lambda, \varphi)$ hodnota tahového součinitele c_t . Následující tabulka je rozšířená o hodnoty c_t , které odpovídají hodnotám zjištěným z předcházejícího diagramu $c_p(\lambda, \varphi)$. Zároveň je v tabulce uvedená procentuální účinnost vrtule pro dané λ .

Tabulka 6. Rozšíření tabulky 5 o hodnoty z grafu $c_t(\lambda, \varphi)$

Hodnoty odečtené z grafu $c_p(\lambda, \varphi)$		Součinitel tahu	Účinnost
Úhel nastavení φ [°]	Rychlostní poměr λ	c _t	η [%]
20	0,45	0,228	60,7
25	0,94	0,152	83,5
30	1,29	0,115	86,5
35	1,70	0,091	87,1

Pro rychlostní poměr λ je dán vztah:

$$\lambda = \frac{V}{n \cdot D_{V510}} \tag{2}$$

kde V je rychlost letounu v m/s. Ze vztahu (2) je tato rychlost vyjádřena jako:

$$V = \lambda \cdot n \cdot D_{V510} \tag{3}$$

Pro dané úhly nastavení vrtule φ a pro c_p lze vypočítat rychlosti nastavení. Účinnost vrtule je dána jako poměr výkonu motoru na hřídeli P_v k výkonu vrtule, kde výkon vrtule je daný jako součin rychlosti letounu *V* a tahu vrtule T_v .

$$\eta = \frac{T_v \cdot V}{P_v} \tag{4}$$

Ze vztahu (4) je možné vyjádřit neznámou T_{ν} . Z odečtených hodnot pak lze vypočítat tah dané vrtule Avia V510 pro každý úhel nastavení φ .

$$T_{\nu} = \frac{\eta \cdot P_{\nu}}{V} = c_t \cdot \rho \cdot n^2 \cdot D_{V510}^4 \eta \qquad (5)$$

U hodnot odečítaných z grafu je nutné počítat s chybou odečítání, díky čemuž budou hodnoty dosti nepřesné. V následující tabulce jsou uvedeny všechny získané hodnoty.

Tabulka 7. Odečtené a vypočítané hodnoty pro referenční jednotku

Hodnoty z grafu	odečtené c _p (λ, φ)	Součinitel tahu	Účinnost	Tah	Rychlost
Úhel nastavení q [°]	Rychlostní poměr λ	c _t	η [%]	T [N]	V [m/s]
20	0,45	0,228	60,7	9393,046	35,88
25	0,94	0,152	83,5	6262,031	74,95
30	1,29	0,115	86,5	4737,721	102,85
35	1,70	0,091	87,1	3748,979	135,55

V následujících dvou grafech je zobrazená závislost účinnosti vrtule na rychlosti letadla a závislost tahu vrtule na rychlosti letadla.

Graf 1. Účinnost referenční vrtule Avia V510

Graf 2. Závislost tahu na rychlosti referenční vrtule Avia V510

Z grafu je vidět, že se zvyšující se rychlostí letounu, tah vrtule klesá.

3. Ideální propulsor

V této kapitole je použita teorie ideálního propulzoru pro získání tahové charakteristiky pohonné jednotky. Nejprve je nutné zobrazit jakým způsobem prochází proud vzduchu vrtulí.

Obr. 4. Průchod vzduchu vrtulí letounu

=

Vrtule je navržená tak, aby urychlovala procházející vzduch, čímž vytváří tah T_v letounu.

Samotný průchod vzduchu vrtulí se dá přirovnat k tekutině, která proudí trubicí. V místě zúžení zvyšuje rychlost proudu, a naopak se zvětšujícím se průřezem rychlost tekutiny klesá. Platí zde zákon zachování hmoty, který se dá vyjádřit touto rovnicí:

$$\dot{m} = \dot{m}_0 = \dot{m}_1 = \dot{m}_2 = = A_{0,1,2} \cdot \rho \cdot v_{0,1,2} \ [kg/s]$$
(6)

kde A je plocha průřezu vzduchového proudu v konkrétních místech proudění. Pro výpočet plochy v místě l platí:

$$A = \frac{\pi}{2} \cdot \left(D^2 - D_{patni}^2\right) =$$

= $\frac{\pi \cdot D^2}{4} \cdot (1 - 0.04) = 0.96 \cdot \frac{\pi \cdot D^2}{4}$ (7)

kde D je průměr vrtule a D_{patni} je průměr vrtulového kužele. Tento vztah pro výpočet plochy průřezu proudové trubice je možné využít pouze pro případ proudění vzduchu v podzvukových rychlostech. Samotné urychlení, jak již bylo řečeno, je způsobené tahem vrtule. Pro zjištění velikosti tahu T_v platí vztah:

$$T_{\nu} = \dot{m} \cdot \Delta \nu = \dot{m} \cdot (\nu_2 - \nu_0) \tag{8}$$

kde Δv je rozdíl rychlostí proudění vzduchu před a za vrtulí. Zároveň lze říci, že rychlost v_0 je rovna rychlosti letounu. Pro rychlosti vzduchu při vstupu do vrtule v_1 a za vrtulí v_2 platí tyto vztahy:

$$v_{1} = \frac{v_{0} + v_{2}}{2} =$$

$$v_{0} + \frac{v_{2} - v_{0}}{2} = v_{0} + \frac{\Delta v}{2} \quad [m/s]$$
(9)

$$v_2 = v_0 + \Delta v \ [m/s]$$
 (10)

Oba tyto vztahy vychází z Bernoulliho rovnice.

Pro výkon motoru je možné využít vztah:

=

$$P = \frac{\dot{m}}{2} \cdot (v_2^2 - v_0^2) \quad [W] \tag{11}$$

Účinnost ideálního propulzoru se získá ze stejného vztahu jako účinnost referenční jednotky (4). V následujícím kroku je ukázána úprava vzorce dosazením rovnic (8) a (11).

$$\eta_{IP} = \frac{T_v \cdot v_0}{P} = \frac{\dot{m} \cdot (v_2 - v_0) \cdot v_0}{\frac{\dot{m}}{2} \cdot (v_2^2 - v_0^2)} = \frac{v_0}{\frac{1}{2} \cdot (v_2 - v_0)} = \frac{2}{1 + \frac{v_2}{v_0}}$$
(12)

K výpočtu účinnosti ideálního propulzoru je nutné znát výstupní rychlost v_2 . Pro její výpočet se vyjde ze vztahu pro výkon. Zároveň se k získání vztahu pro výpočet v_2 využije rovnice (6), (7), (9) a (10). Po dosazení do vzorce pro výkon motoru (11) se získá:

$$P = \frac{\dot{m}}{2} \cdot (v_2^2 - v_0^2) =$$

$$= \frac{1}{2} \cdot A \cdot \rho \cdot v_1 \cdot (v_2^2 - v_0^2)$$
(13)

$$P = A \cdot \rho \cdot v_1 \cdot ((v_0 + \Delta v)^2 - v_0^2) =$$

= $\frac{A \cdot \rho}{2} \cdot \left(v_0 + \frac{\Delta v}{2}\right) \cdot \left[(v_0 + \Delta v)^2 - v_0^2\right]$ (14)

$$P = \frac{A \cdot \rho}{2} \cdot \left(v_0 + \frac{\Delta v}{2} \right) \cdot \left[v_0^2 + 2v_0 \cdot \Delta v + \Delta v^2 - v_0^2 \right] (15)$$

$$0 = \frac{A \cdot \rho}{4} \cdot (\Delta v^3 + 4v_0 \Delta v^2 + 4v_0^2 \Delta v) - P \quad (16)$$

$$0 = \Delta v^3 + 4 \cdot v_0 \cdot \Delta v^2 + 4 \cdot v_0^2 \cdot \Delta v - \frac{4 \cdot P}{A \cdot \rho} \quad (17)$$

Výsledkem je kubická rovnice s neznámou Δv . Pro zjištění rozdílu rychlostí Δv je třeba použít iterační metodu.

3.1. Výpočet Δv referenční jednotky

Nyní se bude řešit konkrétní výpočet rozdílu rychlostí Δv . Bylo využito výpočetního programu Matlab a Newtonovy iterační metody. V tabulce 4 jsou uvedené hodnoty nutné pro výpočet. Plocha vrtule se získá:

$$A = 0,96 \cdot \frac{\pi \cdot D^2}{4} = 0,96 \cdot \frac{\pi \cdot 2,3^2}{4} = 3,9886 \, m^2$$

Plocha vrtule se využije pro výpočet Δv . V následujícím kroku bude uveden výpočet pro rychlost letu $v_0 = 0 \ m \cdot s^{-1}$ dosazením do rovnice (17).

$$0 = \Delta v^{3} + 4 \cdot v_{0} \cdot \Delta v^{2} + 4 \cdot v_{0}^{2} \cdot \Delta v - \frac{4 \cdot P}{A \cdot \rho}$$
$$\Delta v = \sqrt[3]{\frac{4 \cdot 560\ 000}{3,988566033 \cdot 1,225}}$$
$$\Delta v = 77,1078\ m \cdot s^{-1}$$

Využitím hodnoty Δv se získají dosazením do rovnic (9) a (10) hodnoty v_1 a v_2 .

$$v_1 = v_0 + \frac{\Delta v}{2} = 0 + \frac{77,1078}{2} = 38,5539 \, m \cdot s^{-1}$$

 $v_2 = v_0 + \Delta v = 0 + 77,1078 = 77,1078 \, m \cdot s^{-1}$

Další hodnoty Δv se nedají získat tak snadno. Vzhledem k tomu, že se jedná o kubickou rovnici s neznámou hodnotou Δv byl k jejímu získání využito Newtonovy iterační metody.

Newtonova iterační metoda je stacionární jednokroková metoda $(x^{(k+1)} = \phi(x^{(k)}))$ s nelineární vektorovou iterační funkcí $\phi(x) = x - [F'(x)]^{-1} \cdot F$. Pro numerický výpočet je vhodné zjistit, že $f(x)' \neq 0$ při řešení rovnice f(x) = 0. [6]

Nejprve se určí rovnice f(x) = 0:

$$f(\Delta v^{k}) = 0$$
(18)
$$\left(\frac{A \cdot \rho}{4}\right) \Delta v^{k^{3}} + (A \cdot \rho \cdot v_{0}) \cdot \Delta v^{k^{2}} + (A \cdot \rho \cdot v_{0}^{2}) \cdot \Delta v^{k} - P = 0$$

Následně se určí derivace této rovnice f(x)':

$$f'^{(\Delta v^k)} =$$
(19)
= $\left(\frac{3 \cdot A \cdot \rho}{4}\right) \Delta v^{k^2} + (2 \cdot A \cdot \rho \cdot v_0) \cdot \Delta v^k + (A \cdot \rho \cdot v_0^2)$

Pro funkci jedné proměnné platí vztah:

$$\Delta \mathbf{v}^{k+1} = \Delta \mathbf{v}^k - \frac{\mathbf{f}(\Delta \mathbf{v}^k)}{\mathbf{f}'(\Delta \mathbf{v}^k)}$$
(20)

kde *k* označuje krok iterace.

Po dosazení do tohoto vzorce vyjde určitá hodnota Δv^{k+1} . Postup se opakuje, dokud se hodnota Δv neustálí na jedné hodnotě. Pro získání hodnoty Δv bylo potřeba deset až patnáct opakování.

V následující tabulce jsou uvedeny vypočítané hodnoty Δv , v_1 a v_2 pro určité rychlosti v_0 . Zároveň je rozšířena o účinnost ideálního propulzoru, která byla vypočítána dle vztahu (12), pro rychlosti v_0 .

Tabulka 8. Výsledné hodnoty - ideální propulzor

v ₀ [km/h]	${{ u }_{0}}{\left[m\cdot {s}^{-1} ight] }$	$\Delta u [m \cdot s^{-1}]$	$v_1 \ [m \cdot s^{-1}]$	$v_2 \ [m \cdot s^{-1}]$	[%] <i>μι</i> ρ
0	0,000	77,108	38,5539	77,1078	0,00
20	5,556	69,883	40,4973	75,4390	13,7
40	11,111	63,049	42,6360	74,1608	26,1
60	16,667	56,637	44,9850	73,3034	37,1
80	22,222	50,673	47,5587	72,8951	46,7
100	27,778	45,179	50,3673	72,9569	55,2
120	33,333	40,167	53,4171	73,5008	62,4
140	38,889	35,639	56,7088	74,5287	68,7
160	44,444	31,586	60,2376	76,0308	73,8
180	50,000	27,987	63,9937	77,9873	78,1
200	55,556	24,814	67,9626	80,3696	81,7
220	61,111	22,031	72,1268	83,1425	84,7
240	66,667	19,601	76,4673	86,2679	87,1
260	72,222	17,484	80,9644	89,7065	89,2
280	77,778	15,642	85,5989	93,4200	90,9
300	83,333	14,039	90,3530	97,3727	92,2
320	88,889	12,643	95,2106	101,532	93,4
340	94,444	11,425	100,157	105,869	94,3
360	100,00	10,360	105,180	110,360	95,1
380	105,56	9,4261	110,269	114,982	95,7
400	111,11	8,6045	115,413	119,716	96,3
420	116,67	7,8794	120,606	124,546	96,7
440	122,22	7,2375	125,841	129,459	97,1
460	127,78	6,6674	131,112	134,445	97,5
480	133,33	6,1592	136,413	139,493	97,7
490	136,11	5,9158	139,069	142,027	97,9

Pro zobrazení a porovnání rozdílu tahů mezi referenční jednotkou a ideálním propulzorem je nutné získat účinnost η_{IP} pro stejné rychlosti, pro které se v kapitole 4 řešila účinnost referenční jednotky. Pro lepší představu jsou v následující tabulce spojené hodnoty pro referenční jednotku a ideální propulzor.

Tabulka 9. Porovnání ideálního propulzoru a referenční jednotky

Ideální propulzor				Referenční jednotka	Poměr účinností	
<i>v</i> ₀ [m/s]	∆ <i>v</i> [m/s]	<i>v</i> ₁ [m/s]	v ₂ [m/s]	η_{IP} [%]	η_{RJ} [%]	η_{RJ}/η_{IP}
35,88	38,01	54,89	73,9	65,3	61,4	0,946
74,95	16,54	83,22	91,5	90,1	83,4	0,917
102,7	9,865	107,8	112,7	95,1	86,3	0,9169
135,6	5,972	138,5	141,5	97,8	87,1	0,9147

Aby bylo viditelné, jak se průběhy účinností liší, jsou v následujícím grafu vynesené křivky účinností pro oba případy.

Graf 3. Poměr účinností vrtule

Pro další výpočty je nutné znát průměr poměru účinností. Vychází se z předpokladu, že stejný poměr by vyšel i v jiných případech. Nebude tak potřeba pro konkrétní pohonné jednotky počítat teorii ideálního propulzoru pro dané hodnoty, ale k výpočtu se využije zjištěná hodnota k_n .

$$k_{\eta} = \frac{1}{N} \cdot \sum_{i=1}^{N} \frac{\eta_i V 510}{\eta_i IP} = \mathbf{0}, \mathbf{92}$$
(21)

Následně se dle vztahu (5) dopočítal tah ideálního propulzoru. Výpočet opět proběhl pro stejné rychlosti jako u referenční jednotky. V následující tabulce jsou konkrétní vypočítané hodnoty jak ideálního propulzoru, tak referenční jednotky.

Tabulka 10. Poměr tahu referenční jednotky a ideálního propulzoru

$v \left[m \cdot s^{-1} \right]$	T _{RJ}	T _{IP}
35,880	9393,046	10201,09
74,949	6179,636	6728,882
102,856	4737,721	5195,362
135,547	3707,781	4042,366

Aby bylo viditelné, jak se průběhy tahu liší, jsou v následujícím grafu vynesené křivky tahu vrtule pro oba případy.

Tahová křivka pro kombinaci motoru s vrtulí

4.1. Výpočet tahu motoru Pratt and Whitney PT-6A-60A s vrtulí Hartzell

Aby bylo možné získat potřebné hodnoty je nutné uvést parametry motoru PT-6A-60A a vrtule Hartzell HC-B4MP-3C. Tyto parametry jsou uvedeny v následující tabulce:

Tabulka 11. Parametry vrtule Hartzell [9]

Název	Značka	Hodnota	Jednotky
Maximální			
absorbovaný výkon na	Р	783 300	W
max. otáčkách			
Maximální otáčky	п	1 700	ot/min
Průměr vrtule	D	2,667	т
Patní průměr	Durant	0.4826	m
vrtulového kuželu	D patni	0,4020	m

Z již známého vzorce (7) se dopočítá plocha vrtule A:

$$A = \frac{\pi}{2} \cdot \left(D^2 - D_{patni}^2\right) = \frac{\pi}{2} \cdot \left(2,667^2 - 0,4826^2\right)$$
$$= 5,40353 \ m^2$$

Díky všem uvedeným parametrům je možné dopočítat účinnosti této pohonné jednotky. Výpočet probíhal stejným způsobem jako u referenční jednotky. Nejprve se využilo skriptu v programu Matlab pro určení rychlostí $\Delta v, v_1$ a v_2 . Hustota vzduchu byla $\rho = 1,225 kg \cdot m^3$. Účinnost byla získána využitím vzorce (4), výpočet tahu proběhl dle vzorce (5).

V grafu jsou zobrazené křivky účinností ideálního propulzoru a skutečné účinnosti původní pohonné jednotky.

Graf 5. Účinnost původní pohonné jednotky

Jak již bylo řečeno, dalším krokem bylo získání tahové křivky.

Graf 6. Tah původní pohonné jednotky

4.2. Výpočet tahu motoru GE Catalyst ATP

Aby bylo možné získat potřebné hodnoty je nutné uvést parametry motoru GE Catalyst (ATP). Tyto parametry jsou uvedené v následující tabulce:

Tabulka 12. Parametry GE Catalyst ATP

Název	Značka	Hodnota	Jednotky
Maximální absorbovaný výkon na hřídeli	Р	970 000	W
Průměr vrtule	D	2,667	т
Patní průměr vrtulového kuželu	D _{patní}	0,517	т

Pro viditelnost rozdílů mezi experimentální a pohonnou jednotkou byla i zde vypočítána plocha vrtule A.

$$A = \frac{\pi}{2} \cdot \left(D^2 - D_{patni}^2 \right) = \frac{\pi}{2} \cdot \left(2,667^2 - 0,517^2 \right) =$$

= 5,376522 m²

V této části výpočtů se nevychází z teorie ideálního propulzoru, ale z matematického modelu odpovídající výkonové třídě motoru GE Catalyst. Tah byl uvažován jako polynomická funkce rychlosti letu.

Po získání tahové rovnice již bylo možné dopočítat hodnoty pro různé rychlosti. Výsledná tahová křivka je zobrazena v následujícím grafu.

Zároveň byly dle vzorce (4) dopočítány účinnosti dané pohonné jednotky. Graf účinnosti experimentální pohonné jednotky je také zobrazen v následujícím grafu.

Graf 7. Tahová křivka experimentální pohonné jednotky

Graf 8. Účinnost experimentální pohonné jednotky

5. Polára letounu

Polára letounu je aerodynamická charakteristika křídla. Jde o závislost součinitele vztlaku c_y na součiniteli odporu c_x , které přísluší stejným úhlům náběhu listů.

V následujícím obrázku jsou vykresleny složky odporu letounu:

Obr. 5. Složky odporu letounu [8]

Tato práce je zaměřená na výkony letounu v horizontálním letu. Síly působící na letoun jsou při horizontálním letu v rovnovážném stavu.

Cílem této kapitoly je určit odpor letounu. Jak bylo znázorněno v obrázku 5, celkový odpor letounu je roven tahu. Vztah pro tah T a odpor letounu D lze vyjádřit jako

$$D = T = \frac{1}{2}\rho V^2 S c_D \tag{22}$$

kde ρ je hustota vzduchu v 0 m MSA, S je plocha křídla, V je rychlost, a c_D je součinitel odporu letounu.

Vztah pro potřebný vztlak letounu L, respektive tíhu letounu W lze vyjádřit takto:

$$L = W = m \cdot g = \frac{1}{2} \rho V^2 S c_L \tag{23}$$

kde m je hmotnost letounu a c_L je celkový součinitel vztlaku. Celkový součinitel vztlaku lze z předcházejícího vzorce (23) vyjádřit tímto způsobem:

$$c_L = \frac{2mg}{\rho \, V^2 S} \tag{24}$$

Odpor letounu je složen ze dvou složek. Jednou z nich je indukovaný odpor, druhou nežádoucí odpor.

Indukovaný odpor vzniká, když se na křídle vytváří vztlak. Pro přesnější vysvětlení je nejprve třeba zmínit, že samotný vztlak letounu vzniká rozdílem rychlostí obtékání křídla. Průřez křídla je navržen tak, aby vzduch nad křídlem proudil rychleji než vzduch pod ním. Díky vznikajícímu přetlaku pod křídlem letounu vzniká vztlak. Různě rychlé proudy vzduchu (a tudíž rozdílné tlaky), které se setkají na hraně křídla, se snaží tlakově vyrovnat, čímž vzniká víření přibližně ve tvaru kuželu, tzv. indukovaný odpor. [15]

Nežádoucí odpor (nebo také škodlivý odpor) je způsoben více složkami. Trup, podvozek, výškové a směrové kormidlo a spousta jiných částí způsobuje další brzdné účinky ve směru letu. Tento odpor je velkou součástí celkového odporu letounu, nelze jej opomíjet. [16]

Součinitel odporu letounu je tedy definován tímto vztahem:

$$c_D = c_{D_0} + c_{Di} = c_{D_0} + \frac{c_L^2}{\pi \ e \ AR}$$
 (25)

kde c_{Di} součinitel indukovaného odporu, c_{D_0} je součinitel škodlivého odporu, e je Oswaldův koeficient aerodynamické účinnosti letounu. Tento koeficient zahrnuje vliv půdorysného tvaru křídla (pro eliptický tvar křídla je nejmenší). AR je štíhlost křídla. Pro získání štíhlosti křídla platí vztah:

$$AR = \frac{b^2}{S} \tag{26}$$

kde b je rozpětí křídla a S je plocha křídla. Hodnoty plochy a rozpětí křídla pro Beechcraft King Air 350 jsou uvedené v tabulce 1.

$$AR = \frac{17,65^2}{28,8} = 10,8168$$

5.1. Určení škodlivého odporu C_{D_0}

Klouzavost letadla je daná tzv. aerodynamickou jemností, což je poměr mezi součinitelem odporu c_D a součinitelem vztlaku c_L . Vyjádří se vztahem:

$$\frac{c_L}{c_D} = \frac{L}{D} = \frac{c_L}{c_{D_0} + \frac{c_L^2}{\pi \, e \, AR}}$$
(27)

Lze tedy říci, že klouzavost letounu je poměr vztlaku a odporu. Také se dá definovat jako vzdálenost, kterou letadlo uletí za určitý pokles při nulovém tahu. Letadlo dosahuje maximální klouzavosti při určité rychlosti. Pokud by při nulovém tahu udrželo tuto rychlost, doklouže nejdál (při vyšší i nižší rychlosti doklouže kratší vzdálenost). Také platí, že při této rychlosti je celkový odpor stroje minimální.

Po dosazení vztahu (24) a (25) do vztahu (22) se získá rovnice pro celkový odpor:

$$D = T = \frac{1}{2}\rho V^2 S c_{D_0} + \frac{2 \frac{1}{\pi e AR} W^2}{\rho V^2 S}$$
(28)

V místě minimálního platí, že $\frac{dD}{dV} = 0$. Po derivaci vztahu se dostane vztah:

$$Sc_{D_0} - \frac{\frac{1}{\pi e AR} W^2}{S \cdot \left(\frac{1}{2} \rho V^2\right)^2} = 0$$

Po úpravě se získá vztah pro součinitel škodlivého odporu:

$$c_{D_0} = \frac{\frac{1}{\pi \ e \ AR} \ W^2}{\left(\frac{1}{2} \ \rho \ V^2 S\right)^2}$$
(29)

Po dosazení vztahu (23) do rovnice (29) nám vyjde:

$$c_{D_0} = \frac{1}{\pi \ e \ AR} c_L^2 \tag{30}$$

Z letové příručky byla získána rychlost pro optimální (respektive maximální) klouzavost. Tato hodnota je vztažená k maximální vzletové hmotnosti letadla. Maximální vzletová hmotnost letounu Beechcraft King Air 350 je $m = 6\,804 \, kg$. Rychlost pro optimální klouzavost je 135 KIAS, po přepočítání je tato rychlost rovna 69,44 m/s.

Součinitel vztlaku c_L pro minimální odpor letounu je po dosazení všech potřebných hodnot do rovnice (7.3) roven:

$$c_L = \frac{2 m g}{\rho V^2 S} = \frac{2 \cdot 6804 \cdot 9,81}{1,225 \cdot 69,44^2 \cdot 28,8} = 0,7845$$

Dále je třeba získat hodnotu Oswaldova koeficientu. Ten lze vyjádřit ze vztahu $k = \frac{1}{\pi eAR}$, kde je známa hodnota k a hodnota AR:

$$e = \frac{1}{\pi \, k \, AR} = \frac{1}{\pi \, \cdot \, 0.05 \, \cdot \, 10.817} = \mathbf{0}, \mathbf{584}$$

Poslední důležitou hodnotou, která je potřeba pro výpočet poláry letounu je součinitel nežádoucího odporu c_{D_0} .

$$c_{D_0} = \frac{\frac{1}{\pi \ e \ AR} \ (m \cdot g)^2}{\left(\frac{1}{2} \ \rho \ V^2 S\right)^2} = \frac{1}{\left(\frac{1}{2} \ \rho \ V^2 S\right)^2} = \frac{1}{\left(\frac{1}{2} \ \cdot \ 1,225 \ \cdot \ 69,44^2 \ \cdot \ 28,8\right)^2} = \mathbf{0}, \mathbf{03101}$$

5.2. Určení křivky potřebného vztahu

Neboť všechny nezbytné hodnoty nutné pro výpočet potřebného tahu letounu jsou již známé, je možné je dosadit do vztahu (22) a provést výpočet poláry letounu. Cílem bylo získat tahovou křivku vykreslující změny tahu v závislosti na rychlosti letu. V následujícím grafu je zobrazena získaná polára (resp. křivka potřebného tahu) letounu pro horizontální let.

Graf 9. Potřebný tah letounu Beechcraft King Air 350

Využitelný a potřebný tah kombinace původní a experimentální pohonné jednotky

Využitelný tah letounu je součtem tahů pohonných jednotek, které letoun má. Pro získání křivky využitelného tahu se využijí získané tahy motorů z kapitoly 6. Tato křivka se vloží do grafu společně s polárou letounu. Místo protnutí obou křivek by mělo být maximální rychlostí. V následujícím grafu jsou obě křivky zobrazeny:

Graf 10. Potřebný a využitelný tah

Maximální rychlost letounu je v místě průniku dvou křivek, protože využitelný tah nesmí být menší než tah potřebný. Před pokročení k samotnému výpočtu místa průniku se body proloží funkcemi, z toho se získají předpisy funkcí.

Rovnice křivky využitelného tahu:

$$y_1 = -0,002 x^3 + 1,2445 x^2 - 305,95 x + 34985$$

Rovnice křivky potřebného tahu:

$$y_2 = (E - 08)x^6 - (8E - 06)x^5 + 0,0026x^4 - 0,432x^3 + 40,95x^2 - 2068,9x + 47658$$

Úvahou je, že v místě průniku křivek je $y_1 = y_2$, protože tak nastane v rychlosti, která je stejná pro oba tahy. Po dosazení je nutné opět použít iterační metodu výpočtu. Výsledným kořenem polynomické rovnice, a zároveň hledanou maximální rychlostí, je hodnota $v_{max} = x = 138,81 \text{ } m \cdot s^{-1}$

V tomto režimu letu bude nutné zkontrolovat, zda vzniklá asymetrie letu nepřekročí limity letounu předepsané výrobcem.

7. Výkony letounu

Letový výkon je definován tímto vzorcem:

$$P = T \cdot V \tag{31}$$

Z hodnot potřebného a využitelného tahu se tedy získají hodnoty potřebného a využitelného výkonu. Zjistí se hodnota rozdílu výkonů ΔP pro určité rychlosti a následně se dopočítá stoupavost letounu v_y . Tato hodnota určuje rychlost stoupání, tedy určuje schopnost letounu nabrat výšku.

Pro výpočet stoupavosti lze využít tento vztah:

$$v_y = \frac{\Delta P}{W} \tag{32}$$

kde ΔP je rozdíl výkonů, respektive nadbytečný výkon a W je tíha letounu. Pro tíhu letounu lze vyjít z Newtonova gravitačního zákonu, a definuje se takto:

$$W = m \cdot g \tag{33}$$

kde m je celková hmotnost letounu a g je gravitační zrychlení. Po dosazení vzorce (33) do vztahu (32) se získá tento vztah:

$$v_y = \frac{\Delta P}{m \cdot g} \tag{34}$$

Cílem je zjistit, při které rychlosti letoun nejvíce stoupá.

V grafu jsou zobrazeny křivky potřebného P_p a využitelného P_v výkonu letounu Beechcraft King Air 350 s kombinací původní a experimentální pohonné jednotky.

Graf 11. Potřebný a využitelný výkon

Křivky se opět protínají v místě maximální rychlosti letounu v_{max} . V následujícím grafu je zobrazena křivka stoupavosti, získána dle vztahu (34).

Graf 12. Stoupavost letounu

Z grafu je zřejmé, že letoun nejlépe stoupá při rychlosti **72 m/s** (140 KIAS). Hodnota stoupavosti při této rychlosti je $v_v = 15,461 m/s$.

Řiditelnost letounu při asymetrickém tahu

V této kapitole se zkoumá řiditelnost letounu s kombinací původní a experimentální pohonné jednotky. Ověřuje se, zda je směrové řízení dostatečné pro řízení letounu v podobné konfiguraci. Následně se spočítá, jak velký bude náklon letounu pro vyrovnání nesymetrie tahu. Aby bylo možné řiditelnost letounu Beechcraft King Air 350 spočítat, je třeba znát následující parametry:

Tabulka 13. Parametry pro výpočet řiditelnosti

	Značka	Hodnota	Jednotka
Rozpětí křídla letounu	b	17,65	m
Plocha křídla letounu	S	28,8	m^2
Účinná plocha svislé	c	6.14	1002
ocasní plochy (SOP)	S _{sop}	0,14	m-
Výška svislé ocasní	1	2.15	100
plochy	ι _a	2,15	m
Plocha svislé ocasní	c	2.05	
plochy	³ a	5,95	m
Maximální výchylka	2	15	0
směrového kormidla	0 _{r max}	15	
Rameno umístění			
motoru od středu	Y _e	2,61	т
letounu			
Rameno aerodyn.	1	7.2	
středu SOP vůči těžišti	lsop	1,5	m

Hustota vzduchu v 0 m MSA	ρ	1,225	$kg \cdot m^3$
Hmotnost letounu	$W = m \cdot q$	6804 • 9,81	kg

Obr. 6. Osy letounu (Upraveno z: [17])

8.1. Určení křivky potřebného vztahu

Nejprve se bude řešit řiditelnost v ose Z, tedy ovládání letounu pomocí směrového kormidla. Kormidlo je součástí svislé ocasní plochy. Je pohyblivé a stejně jako klasické křídlo vyvozuje vztlak (tedy moment kolem osy Z), který napomáhá k otočení letounu.

Pokud dochází k asymetrickému tahu, využívá se toto kormidlo a moment který vyvozuje ke kompenzaci asymetrie. Tento moment je závislý na výchylce směrového kormidla δ_r . Tato výchylka δ_r musí být menší než výchylka $\delta_{r max}$, která je uvedená v tabulce 13. Výchylka, která je nutná pro kompenzaci asymetrického tahu je dána vztahem:

$$\delta_r = \frac{T \cdot Y_e}{q \cdot S \cdot b \cdot V_v \cdot a_v \cdot \eta_t \cdot \tau}$$
(35)

kde T je tah pohonné jednotky, a_v je sklon vztlakové křivky směrového kormidla, V_v je mohutnost svislé ocasní plochy, $\tau = 0,688$ a je to směrnice křivky změny vztlakového koeficientu na výchylku směrového kormidla a q je dynamický tlak.

Dynamický tlak q je definován tímto vztahem:

$$q = \frac{1}{2} \cdot \rho \cdot v^2 \tag{36}$$

Sklon vztlakové křivky a_v je definován vztahem:

$$a_v = \frac{2 * \pi * \lambda}{\sqrt{\lambda^2 + 4} + 2} \tag{37}$$

kde koeficient $C_{y\alpha} = 6,5481 \, rad^{-1}$ a jde o směrnici křivky závislosti součinitele vztlaku na úhlu profilu náběhu NACA 0012, hodnota t = 0,1 a byla získána odečtením ze závislosti opravného součinitele pro nezkroucené křídlo na zúžení křídla. Hodnota λ je štíhlost svislé ocasní plochy a je definována rovnicí:

$$\lambda = \frac{l_a^2}{S_a} \tag{38}$$

Dosazením hodnot z tabulky 13 do rovnice (38) se získá hodnota štíhlosti svislé ocasní plochy:

$$\lambda = \frac{l_a^2}{S_a} = \frac{2,15^2}{3,95} = \mathbf{1},\mathbf{170253}$$

Dosazením do rovnice (37) se získá hodnota sklonu vztlakové křivky:

$$a_{\nu} = \frac{2 * \pi * \lambda}{\sqrt{\lambda^2 + 4} + 2}$$
$$= \frac{2 * \pi * 1,170253}{\sqrt{1,170253^2 + 4} + 2} = 1,70316140911$$

Mohutnost svislé ocasní plochy V_v je definována vzorcem:

$$V_{\nu} = \frac{S_{sop} \cdot l_{sop}}{S \cdot b} \tag{39}$$

Po dosazení hodnot z tabulky 13 vyjde:

$$V_{\nu} = \frac{S_{sop} \cdot l_{sop}}{S \cdot b} = \frac{6,14 \cdot 7,3}{28,8 \cdot 17,65} = \mathbf{0},\mathbf{08817674}$$

V následujícím kroku bude naznačen průběh výpočtů pro rychlost v = 85 KIAS pro výpočet je nutné, aby byly hodnoty v základních jednotkách, z toho důvodu se pro výpočet použije přepočítaná rychlost v = 43,7 m/s. V prvním kroku se dosadí do vzorce (36) a získá se hodnota dynamického tlaku:

$$q = \frac{1}{2} \cdot \rho \cdot v^2 = \frac{1}{2} \cdot 1,225 \cdot 43,7^2 = \mathbf{1171}, \mathbf{2}$$

V dalším kroku se již dosadí do rovnice (35). Hodnoty nutné pro výpočet jsou v tabulce 13. Za η_t poměr dynamických tlaků v místě kormidla a před letounem se dosadí hodnota $\eta_t = 1$. Za T se dosadí tah pro rychlost 43,7 m/s pro kombinaci dvou pohonných jednotek. Tato hodnota byla spočítána v kapitole 8. Konkrétní hodnota, která bude v tomto případě použita je T = 11914,07 N.

$$\delta_r = \frac{T \cdot Y_e}{q \cdot S \cdot b \cdot V_v \cdot a_v \cdot \eta_t \cdot \tau} =$$
$$= \frac{11914,07 \cdot 2,61}{1171,2 \cdot 28,8 \cdot 17,65 \cdot 0,08817674 \cdot 1,70316 \cdot 1 \cdot 0,688}$$

= 0, 505515 rad

Tímto způsobem se postupovalo i ve výpočtu výchylek směrového kormidla pro další rychlosti.

V tabulce na následující straně jsou vypsané hodnoty vypočítaných parametrů a výchylek směrového kormidla pro dané rychlosti:

KIAS	v [m/s]	q	T [N]	δ _r [rad]	$\pmb{\delta_r}\left[^\circ ight]$
85	43,7	1171,2	11914,07	0,51	28,96
90	46,3	1313,0	11650,16	0,44	25,26
95	48,9	1463,0	11391,83	0,39	22,17
100	51,4	1621,0	11136,71	0,34	19,56
105	54,0	1787,2	10890,21	0,30	17,35
110	56,6	1961,4	10649,57	0,27	15,46
115	59,2	2143,8	10414,85	0,24	13,83
120	61,7	2334,2	10184,46	0,22	12,42
125	64,3	2532,8	9961,75	0,20	11,20

Tabulka 14. Výchylka směrového kormidla

Hodnoty v červeném poli označují hodnoty, které přesahují maximální výchylku směrového kormidla, která je 15°. Výchylka 15° nastává při rychlosti 111,3 KIAS, což je v přepočtu **57,25 m/s.**

8.2. Naklonění letounu

Při vybočení směrového kormidla začne na letoun působit boční síla Y_v . Aby byl letoun při nesymetrickém tahu v rovnováze, je třeba aby byl v okolí příčné osy nulový součet sil. Reálně to znamená, že pilot za pomoci křidélek nakloní letoun okolo osy X. Předpokladem je, že jde o malé úhly, z toho důvodu lze říci, že $\cos \varphi = \varphi$. Následně tedy pro úhel náklonu platí:

$$\varphi = \frac{q \cdot S_{sop} \cdot \tau \cdot a_v \cdot \delta_r \cdot \eta_t}{W}$$
(40)

V následujícím kroku bude opět naznačen výpočet rovnice (40) pro v = 43,7 m/s s asymetrickým tahem způsobeným kombinací původní a experimentální pohonné jednotky:

$$\varphi = \frac{q \cdot S_{sop} \cdot \tau \cdot a_v \cdot \delta_r \cdot \eta_t}{W}$$
$$= \frac{1171,2 \cdot 6,14 \cdot 0,688 \cdot 1,70316 \cdot 0,379 \cdot 1}{6804 \cdot 9.81}$$

$= 0,0638 \, rad$

V následující tabulce jsou uvedeny náklony letounu s asymetrickým tahem pro různé rychlosti:

Tabulka 15. Naklonění letounu

KIAS	v [m/s]	q	$\delta_r [rad]$	φ[rad]	φ [°]
85	43,7	1171,2	0,506	0,0638	3,6565
90	46,3	1313,0	0,441	0,0624	3,5755
95	48,9	1463,0	0,387	0,0610	3,4962
100	51,4	1621,0	0,341	0,0597	3,4179
105	54,0	1787,2	0,303	0,0583	3,3423
110	56.6	1961.4	0.270	0.0570	3.2684

115	59,2	2143,8	0,241	0,0558	3,1964
120	61,7	2334,2	0,217	0,0546	3,1257
125	64,3	2532,8	0,195	0,0534	3,057

Hodnoty označené červeně odpovídají rychlostem, ve kterých vychýlení směrového kormidla přesáhne maximální výchylku. Z toho důvodu nemohou být tyto výsledné hodnoty přesné.

Naklonění letounu při výchylce směrového kormidla 15° bylo vypočítáno na hodnotu $\varphi = 3,2494^{\circ}$

9. Závěr

Hodnoty tahu nejsou úplně přesné, neboť se u původní pohonné jednotky nevycházelo z naměřených dat, ale počítalo se dle teorie ideálního propulzoru. V rámci teorie ideálního propulzoru může výsledný tah vycházet až o 15% vyšší než u reálné pohonné jednotky. U experimentální pohonné jednotky se vycházelo z matematického modelu, který odpovídá výkonové třídě motoru GE Catalyst, ale opět to nejsou přesné hodnoty pro daný motor. Z tohoto důvodu i tato část výpočtů může být nepřesná.

Seznam symbolů

Značka	Definice	Jednotky
'n	Hmotnostní průtok	kg/s
Δv	Rozdíl rychlosti proudění vzduchu před	m/s
$c_{Y_{\alpha}}$	Směrnice křivky závislosti součinitele vztlaku na úhlu náběhu NACA 0012	-
Α	Plocha vrtule	m^2
AR	Štíhlost křídla letounu	-
a_v	Směrnice vztlakové křivky směrového kormidla	-
b	Rozpětí křídla letounu	m
CD	Součinitel odporu letounu	-
CD0	Součinitel škodlivého odporu	-
CDi	Součinitel indukovaného odporu	-
CL	Celkový součinitel vztlaku	-
c_p	Součinitel výkonu vrtule	-
C_t	Tahový součinitel	-
C_X	Součinitel odporu	-
C_y	Součinitel vztlaku	-
D	Průměr vrtule	m
D_{patni}	Průměr vrtulového kužele	m
е	Oswaldův koeficient aerodynamické účinnosti letounu	-
g	Gravitační zrychlení	m/s^2
k	Krok iterace	-
k_{η}	Průměr poměru účinností	-
l_a	Výška svislé ocasní plochy	m
lsop	Rameno aerodynamického středu svislé ocasní plochy vůči těžišti	т
т	Celková hmotnost letounu	kg
п	Rozsah regulovaných otáček	min ⁻¹
Р	Výkon motoru	W
P_p	Potřebný výkon letounu	W
P_{v}	Maximální absorbovaný výkon na maximálních otáčkách	W
P_{v}	Využitelný výkon letounu	W
q	Dynamický tlak	Pa

S	Plocha křídla letounu	m^2
S_a	Plocha svislé ocasní plochy	m^2
Ssop	Účinná plocha svislé ocasní plochy	m^2
t	Opravný součinitel pro nezkroucené křídlo	-
Т	Tah	N
T_{IP}	Tah ideálního propulzoru	N
T_{RJ}	Tah referenční jednotky	N
T_{v}	Tah vrtule	N
V	Rychlost	m/s
$\mathcal{V}0$	Rychlost letounu	m/s
$\mathcal{V}I$	Rychlost vzduchu při vstupu do vrtule	m/s
V2	Rychlost vzduchu za vrtulí	m/s
Vmax	Maximální rychlost letounu	m/s
V_V	Mohutnost svislé ocasní plochy	-
v_y	Stoupavost letounu	m/s
W	Tíha letounu	kg.m/s ²
Y_e	Rameno umístění motoru od středu letounu	т
δ_r	Výchylka nutná pro kompenzaci asymetrického tahu	0
$\delta_{r max}$	Maximální výchylka směrového kormidla	٥
η	Účinnost	%
η_{IP}	Účinnost ideálního propulzoru	%
η_{RJ}	Účinnost referenční jednotky	%
η_t	Poměr dynamických tlaků v místě kormidla před letounem	-
λ	Rychlostní poměr	-
λ	Štíhlost svislé ocasní plochy	-
ρ	Hustota vzduchu	kg/m^3
,	Směrnice křivky změny vztlakového	0
τ	koeficientu na výchylku směrového kormidla	-
φ	Nastavení úhlu vrtule	0
φ	Úhel náklonu letounu/Úhel nastavení	rad
'		

Literatura

- [1] King Air 350i. *Beechcraft Textron Aviation* [online]. 2018 [cit. 2018-07-20]. Dostupné z: <u>https://beechcraft.txtav.com/en/king-air-350i</u>
- [2] Specification and description King Air 350i: Beechcraft Textron Aviation [online]. October 2015. 2015 [cit. 2018-07-20]. Dostupné z: http://www.africair.com/wpcontent/uploads/2016/03/SD-KA350i-Unit-1031-to-TBD-2015-Oct.pdf
- PT6A: More than an Engine. Pratt and Whitney [online]. Pratt and Whitney Canada, 2018 [cit. 2018-07-22]. Dostupné z: <u>https://www.pwc.ca/en/products-and-</u> services/products/general-aviation-engines/pt6a
- [4] Introducing GE's Catalyst[™] Advanced turboprop engine. GE Aviation [online]. 2017 [cit. 2018-07-22]. Dostupné z: https://www.geaviation.com/bga/engines/ge-catalyst
- [5] NORRIS, Guy. GE Takes On PT6 Engine With Advanced Turboprop. Aviation Week [online]. 2015 [cit. 2018-07-22]. Dostupné z: <u>http://aviationweek.com/business-aviation/ge-takespt6-engine-advanced-turboprop</u>
- [6] BENDA,CSC., Doc. RNDr. Josef a Doc. RNDr. Růžena ČERNÁ, CSC. Numerická matematika. Praha, 2008. Doplňkové skriptum. České vysoké učení technické v Praze.

- [7] LNĚNIČKA, Jaroslav. Polára letounu. *E-magazín Akademie letectví* [online]. 2009, 20.2.2009, 2009(4)
 [cit. 2018-07-25]. Dostupné z: <u>http://www.airspace.cz/akademie/rocnik/2009/04/pola ra.php</u>
- [8] ANDERSON, JR., John D. Introduction to Flight. Fourth Edition. United states of America: McGraw-Hill international editions, 2000. ISBN 0-07-109282-X.
- [9] ŘÍHA, Bohuslav. Pohon letadel-příkladová část. Praha: České vysoké učení technické, 1992. ISBN 80-010-0850-9.
- [10] TRNKA, Bc. Adam. Zástavba turbovrtulového motoru do letové zkušebny. Praha, 2017. Diplomová práce. ČVUT v Praze, Fakulta strojní. Vedoucí práce Ing. Jan Klesa, Ph.D.
- [11] Certifikační specifikace pro letouny kategorie normální, cvičná, akrobatická a pro sběrnou dopravu CS-23: Konsolidované znění. Úřad pro civilní letectví: Evropská agentura pro bezpečnost letectví (EASA), 2012, 452 s. Dostupné také z: file:///C:/Users/hladi/Downloads/CS-23 konsolidovane Amdt 3 CZ.pdf
- [12] Textron through the decades. *Textron* [online]. Textron, 2018 [cit. 2018-08-01]. Dostupné z: <u>https://www.textron.com/About/Company/History</u>
- [13] LAMBERT, Bruce. Olive A. Beech, 89, Retired Head of Beech Aircraft. *The New York Times* [online]. 1993, **1993** [cit. 2018-08-01]. Dostupné z: https://www.nytimes.com/1993/07/07/obituaries/olive -a-beech-89-retired-head-of-beech-aircraft.html
- [14] HESS, Susan. Olive Ann and Walter H. Beech: Partners in Aviation[online]. Wichita State University Libraries: Special Collections and University Archives [cit. 2018-08-01]. Dostupné z: http://specialcollections.wichita.edu/exhibits/beech/ex hibita.html
- [15] LNĚNIČKA, Jaroslav. Jak to je asi s indukovaným odporem. Akademie letectví [online]. 2014, 11.12.2014 [cit. 2018-08-01]. Dostupné z: <u>https://www.airspace.cz/akademie_letectvi/2014/12/ja</u> <u>k-to-je-asi-s-indukovanym-odporem/</u>
- [16] LNĚNIČKA, Jaroslav. Nevítaný škodlivý odpor letadel. Akademie letectví [online]. 2011, 11.7.2011 [cit. 2018-08-01]. Dostupné z: https://www.airspace.cz/akademie_letectvi/2011/07/n evitany-skodlivy-odpor-letadel/
- [17] Stability and Controllability [online]. [cit. 2018-08-01]. Dostupné z: http://avstop.com/ac/flighttrainghandbook/stability.ht ml
- [18] *Forces-acting* [online]. Pilot Patric, 2016 [cit. 2018-08-02]. Dostupné z: <u>https://pilotpatrick.com/vmc article fig 3 -</u> <u>forces and moments during wings-</u> <u>level equilibrium/</u>
- [19] Minimum control speed [online]. 2016 [cit. 2018-08-02]. Dostupné z: https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL 72vedxjQkDDP1mXWo6uco/wiki/Minimum_Control <u>Speeds.html</u>
- [20] Type- certificate data sheet: Beech Models:- B200, B200C, B200GT, B200CGT, B300 and B300C (King Air). In: . EASA, 02 March 2018. Dostupné také z: https://www.easa.europa.eu/sites/default/files/dfu/EA SA%20IM%20A%20277_Issue12.pdf