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Abstra
t

This paper presents a solution of a dam break �ow over a dry horizontal bed in two dimensions using the weakly 
om-

pressible smoothed parti
le hydrodynami
s (SPH) method. This work fo
uses mainly on the evaluation of pressure and

for
es exerted on the downstream verti
al wall. First, a pressure evaluation te
hnique suitable for weakly 
ompressible

SPH is des
ribed. Validation of the te
hnique using experimental data follows, and �nally, the pressure distribution

and the total for
e on the verti
al wall is evaluated. Analysis of pressure distribution and total for
e as a fun
tion of

time is 
arried out. All physi
al quantities are 
onverted into non-dimensional variables for simple 
omparison with

results in other works.
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1. Introduction

A 
olumn of liquid released from a tank by sudden

removing of one of its walls o�ers a varied palette of

phenomena to be studied, and it is quite impressive

from the visual point of view. These might be the

main reason why it has been investigated so many

times in many di�erent modi�
ations and by many

di�erent approa
hes and methods.

The authors most often fo
us on the kinemati
s

of the �ow. The fundamental experimental work on

this topi
 by Martin et al. was dealing with the surge

front position and the height of the 
olumn as a fun
-

tion of time [1℄. Experimental kinemati
 data were

used for validation of numeri
al methods for free sur-

fa
e �ow, e.g., the volume of �uid for �nite volume

method [2℄, smoothed parti
le hydrodynami
s [3℄, or

moving-parti
le semi-impli
it [4℄.

Not only kinemati
 behaviour but also dynami


e�e
ts were taken into a

ount re
ently. Pressure

values on verti
al downstream wall impa
ted by the

surge were measured in di�erent heights by Zhou et

al. [5℄, Kleefsman et al. [6℄, or Wemmenhove et al.

[7℄. All these works have been used for veri�
ation of

numeri
al methods for free surfa
e �ow. Lobovský et

al. [8℄ lo
ated the pressure sensors so, that the po-

sitions mat
hed with the set-ups from the previously

mentioned works and 
ompared the results. Pressure

and for
es were evaluated for validation of SPH mod-

els as well, e.g., Marrone et al. [9℄ and Adami et al.

[10℄. Data from [5℄ were used in both these 
ases.

In re
ent works by the author, kinemati
s of the

solution obtained with the presented SPH method

was proved to be in agreement with experimental data

[11, 12℄. Therefore, this paper fo
uses on the dynam-

i
s of the �ow. The �rst goal of this work is to validate

the proposed pressure evaluation te
hnique for weakly


ompressible SPH using experimental data from [8℄.

The subsequent goal is to use this te
hnique to evalu-

ate pressure on the downstream verti
al wall after the

surge impa
t and total pressure load. The following

analysis identi�es interesting or important moments

of the pro
ess and links them with �ow kinemati
s.

2. Method

2.1. Weakly compressible SPH

Smoothed parti
le hydrodynami
s is a mesh-free par-

ti
le method. Its Lagrangian nature makes it parti
-

ularly suitable for transient multiphase problems. A

very brief des
ription of the method with emphasis on

parts in�uen
ing pressure evaluation is given in the

following paragraphs. For more detailed information

see for example [13℄.

One of the key 
on
epts of the SPH is so-
alled

weight fun
tion. In this work, trun
ated Gaussian

fun
tion is employed. It is usually written as

W (R, h) =







π−
d
2 h−de−R2

if R < 3

0 if R ≥ 3
, (1)

where h is so-
alled smoothing length, d is number of

spatial dimensions, and R = |~xj − ~xi|/h. Ve
tor ~x is

spatial 
oordinate and indi
es i and j denote inter-

a
ting parti
les.

The governing equations of 
ompressible and in-

vis
id �uid motion in SPH dis
retized form are

D̺i
Dt

= ̺i
∑

j

mj

̺j
(~vi − ~vj) · ∇Wij +Di , (2)

D~vi
Dt

= −
∑

j

mj

(pj
̺2j

+
pi
̺2i

+Πij

)

∇Wij + ~fi , (3)

where ̺, ~v, p, m, and t denote density, velo
ity, pres-

sure, mass, and time. Other symbols

~f , Π, and D are

the intensity of external body for
e, arti�
ial vis
osity

term, and arti�
ial mass di�usion term.

Sin
e the �uid is modelled as 
ompressible, an

equation of state is needed to 
lose the system of

equations. A popular 
hoi
e is equation in the form

p =
c2̺0
γ

[

( ρ

̺0

)γ

− 1

]

, (4)
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where c is speed of sound, ̺0 is referen
e density, and
γ is exponent of the equation. Exponent γ = 7 is usu-
ally 
hosen for liquids. The speed of sound 
ould be

set to its a
tual physi
al value, but this 
hoi
e would

demand very small time steps. Maximal time step for

numeri
al stability of an expli
it integration s
heme is

indire
tly proportional to the speed of sound. There-

fore, a good 
hoi
e proved to be a value about ten

times higher than the maximal velo
ity of the �ow,

whi
h keeps the �uid almost in
ompressible while the

integration is reasonably e�e
tive [3℄.

Arti�
ial vis
osity term is 
ommonly used Mon-

aghan arti�
ial vis
osity whi
h ensures numeri
al sta-

bility [14℄. Arti�
ial mass di�usion smooths density

�eld, whi
h is naturally very noisy in weakly 
om-

pressible SPH. It 
an be written as

Di = 2δhc
∑

j

(̺j − ̺i)
(~xj − ~xi) · ∇Wij

(~xi − ~xj) · (~xi − ~xj)
, (5)

where δ is a 
oe�
ient of arti�
ial di�usion [15℄.

The arti�
ial di�usion would not smooth density

�eld enough for 
orre
t pressure evaluation. An addi-

tional density �eld smoothing te
hnique is therefore

employed. It is density reinitialization and it is de-

s
ribed by the formula

̺i =

∑

j mjWij
∑

j

mj

̺j
Wij

. (6)

It is performed every twenty time steps. Similar te
h-

nique applied Colagrossi and Landrini [16℄.

Wall boundary 
ondition is modelled as free-slip,

and the same dummy parti
le method was used as

in previous work [12℄. This method preserves the

pressure �eld near the walls su�
iently smooth. Free

surfa
e is formed naturally thanks to Lagrangian na-

ture of the SPH method and appropriate 
hoi
e of the

equation of state.

2.2. Pressure and force evaluation

Ea
h parti
le has its own pressure value, and it


hanges its position in time. However, we need to ob-

tain pressure value at a 
ertain point �xed in spa
e.

Pressure value at this point is obtained by interpola-

tion from neighbouring �uid parti
les using formula

pS =

∑

j pjWSj
∑

j WSj

, (7)

where index S denotes pressure sensor. Smoothing

length is 
hosen the same as for the simulation itself.

Too high value of the smoothing length would lead

to too distant parti
les to be 
onsidered, and the re-

sult would be in
orre
t. The same applies for too low

value be
ause not enough parti
les would be taken

into a

ount.

Small groups of parti
les deta
h from the main

�uid body. Pressure values of parti
les in these

groups are erroneous. That is a parti
le 
ount thresh-

old is de�ned. Pressure reading is 
arried out only if

the number of parti
les in�uen
ing the sensor is above

this threshold. An appropriate value appears to be

50% of the maximal potential number of in�uen
ing

parti
les.

The pressure signal from the sensor is still very

noisy, and high frequen
ies have to be suppressed.

As a low-pass �lter is used weight fun
tion in the

time domain where d = 1 and smoothing length h
is repla
ed by smoothing time period τ . Choi
e of

this period is problem dependent. It has to suppress

numeri
al noise but should not smooth out physi
al

phenomena. The time �ltering 
an be written

pSm =

∑

n pSnWmn
∑

n Wmn

, (8)

where indi
es m and n denote time steps. Moreover,


orre
t sampling has to be kept in mind be
ause alias-

ing 
an o

ur. Reading the pressure value every �fth

integration step, proved to be su�
ient to 
apture the

highest frequen
ies in the signal.

The total for
e a
ting on a wall is a sum of pres-

sure values multiplied by the 
orresponding areas of

the pressure sensors. In mathemati
al notation this

is

~F =
∑

S

pS ~AS . (9)

The area AS is dependent on a distribution of the

sensors. Distan
es between the sensors are 
hosen

the same as the initial �uid parti
le spa
ing.

3. Results

3.1. Problem description

The solved problem 
orresponds to the experimen-

tal apparatus used in [8℄. The numeri
al solution is

performed in two dimensions and all important di-

mensions in
luding the pla
ement of pressure sensors

P1-P4 displays Figure 1.

Fig. 1. S
heme of the problem with positions of the pres-

sure sensors. Dimensions in millimetres.

The �uid domain is divided into 20 000 identi
al

parti
les. A solution using a 
oarser resolution was


omputed as well. There was virtually no di�eren
e

in the kinemati
s of the �ow, but pressure values were

slightly di�erent be
ause the size of the domain of in-

�uen
e of a pressure sensor is resolution dependent.

For the sake of easier 
omparison with other

experimental or numeri
al results, non-dimensional

variables are de�ned and used from now on. Non-

dimensional time, verti
al dimension, pressure, and

for
e are de�ned as

T = t

√

|~g|

y0
, (10)

Y =
y

y0
, (11)

P =
p

̺0|~g|y0
, (12)

Φ =
2|~F |

̺0|~g|y20z0
, (13)
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where ~g is the gravity a

eleration ve
tor, y0 is the

initial liquid 
olumn height, and z0 is the width of

the 
olumn, whi
h is unity in a two-dimensional 
ase.

De�nition of non-dimensional for
e gives unity value

for a hydrostati
 load on a re
tangular verti
al wall

of height y0 = 300 mm.

3.2. Validation of the pressure evaluation method

Four pressure sensors P1 - P4 are pla
ed on the ver-

ti
al wall at non-dimensional height 0.01, 0.05, 0.1,
and 0.267 respe
tively. Pressure values as fun
tions

of time at these given points were evaluated and 
om-

pared with the experimental results from [8℄. Both

experimental and numeri
al data are plotted in Fig-

ure 2.

In the experiment, the highest pressure value o
-


urs at the lowest sensor P1 immediately after the

surge impa
t, and the pressure value drops after-

wards. Two higher sensors P2 and P3 give lower max-

imal pressure, and these peaks are not as sharp as the

�rst one. Furthermore, they are slightly shifted to-

wards later times. The fourth sensor shows a gradual

pressure rise without a noti
eable peak. The pres-

sure at all four sensors rises again slightly at about

T = 5.8. This rise is 
aused by the impa
t of the

rolling wave, whi
h emerges during the pro
ess.

Peak value at P1 is slightly overestimated, while

maximal value at P3 is predi
ted lower than the ex-

perimental value. The pressure at P4 rises slower, but

it rea
hes the experimental value at about T = 4.5.
In
rease in pressure 
aused by the rolling wave im-

pa
t is noti
eable as well. However, it o

urs later

than in the experiment.

The qualitative agreement of numeri
al and ex-

perimental data is very good overall; all the impor-

tant phenomena are 
aptured properly. From the

quantitative point of view, the result is good. The

di�eren
e between the simulation and the experiment

does not ex
eed 15% for sensors P1 - P3. The worst

level of agreement is for the highest sensor P4; the dif-

feren
e is up to 50%. Overall, pressure data obtained

from the simulation 
an be used to predi
t pressure

load, at least from a qualitative perspe
tive.

3.3. Evaluation of pressure distribution and force

Total non-dimensional for
e on the downstream ver-

ti
al wall as a fun
tion of non-dimensional time dis-

plays Figure 3. Pressure distribution as a fun
tion of

time in non-dimensional variables shows Figure 4.

3 4 5 6 7
T (1)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 (
1)

Fig. 3. Non-dimensional for
e a
ting on the downstream

verti
al wall as a fun
tion of non-dimensional time.

Maximal pressure value o

urs immediately after

the initial impa
t (T = 2.48), and it is limited to a

very small area near the bottom of the wall (Figure

5). Its magnitude is almost four times bigger than

hydrostati
 pressure 
aused by a liquid 
olumn of the

initial height. The total for
e is in�uen
ed by two

major fa
tors. The �rst one is the maximal pres-

sure value in the 
orner of the tank, and the other

is the overall area of the wall a�e
ted by the liquid.

The pressure peak gradually vanishes while the over-

all area a�e
ted by the liquid in
reases as the thi
k-

ness of the liquid layer impa
ting the wall grows and

a jet is formed along the wall. As a result, a peak of

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
T (1)

0

0.5

1

1.5

2

2.5

3

3.5

P
 (

1)

P1 simulation
P2 simulation
P3 simulation
P4 simulation
P1 experiment
P2 experiment
P3 experiment
P4 experiment

Fig. 2. Non-dimensional pressure as a fun
tion of non-dimensional time at sensors P1 - P4. Comparison of the

numeri
al and the experimental data from [8℄
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Fig. 4. Distribution of non-dimensional pressure along the downstream verti
al wall as a fun
tion of non-dimensional

time.

total for
e shows when the pressure in the 
orner is

relatively low (T = 2.80), but the liquid a�e
ted area

is already signi�
ant (Figure 6). The magnitude of

the for
e peak is less than one half of the hydrostati


for
e 
aused by a liquid 
olumn of the initial height.

A drop in the total for
e follows as the pressure peak

further de
reases. However, the pressure a�e
ted area

of the wall grows fast, and the total for
e grows to-

gether with it. The total for
e rea
hes higher a value

than the �rst peak after a while.

1.2 1.3 1.4 1.5 1.6
x (m)

0

0.05

0.1

y
 (

m
)

Fig. 5. Detail of the solution for T = 2.48. Pressure

rea
hes its maximal value.

1.2 1.3 1.4 1.5 1.6
x (m)

0

0.05

0.1

0.15

0.2

0.25

y
 (

m
)

Fig. 6. Detail of the solution for T = 2.80. Total for
e

rea
hes its �rst peak.

The verti
al jet gradually loses its momentum, es-

pe
ially its higher parts. However, the liquid from the

bottom part of the tank still �ows upwards along the

verti
al wall. Consequently, a bulge of liquid appears

on the wall (Figure 7). It leads to a relatively sudden

in
rease in the liquid a�e
ted area, and it is well no-

ti
eable in the pressure distribution at about T = 4.6.
On the other hand, this phenomenon does not 
learly

appear in the evolution of the total for
e. The total

for
e gradually rises from its lo
al minimum without

any noti
eable 
hange in its gradient.

1.2 1.3 1.4 1.5 1.6
x (m)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

y
 (

m
)

Fig. 7. Detail of the solution for T = 4.60. The bulge on

the verti
al wall.

A rolling wave evolves from the bulge as shown if

Figure 8. As the tip of the rolling wave approa
hes

the surfa
e, the total for
e on the wall still gradu-

ally in
reases. Just before the impa
t, the total for
e

rea
hes the magnitude about twi
e as big as the peak
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o

urring right after the impa
t. That means that

it almost rea
hes the same magnitude as the hydro-

stati
 for
e 
aused by a liquid 
olumn of the initial

height. The liquid a�e
ted area of the wall gradually

de
reases.

1.2 1.3 1.4 1.5 1.6
x (m)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

y
 (

m
)

Fig. 8. Detail of the solution for T = 5.75. The rolling

wave.

As the jet further des
ends, the liquid a�e
ted

area gradually de
reases. There are two signi�
ant

peaks present at about T = 6.12, and T = 6.50 in the

pressure distribution, and they strongly a�e
t the to-

tal for
e as well. Groups of parti
les impa
ting the

surfa
e very 
lose to the wall generate these peaks.

These parti
les were eje
ted from the main �uid body

in the initial stage of the surge impa
t. However,

the rise in total for
e is not 
aused by these impa
ts

alone. The pressure in
reases be
ause the �ow under

the rolling wave a

elerates towards the right wall af-

ter the rolling wave impa
ts.

1 1.1 1.2 1.3 1.4 1.5 1.6
x (m)

0

0.1

0.2

0.3

y
 (

m
)

Fig. 9. Detail of the solution for T = 6.50. In
rease in

total for
e 
aused by the a

elerated �ow under the rolling

wave and the impa
ting parti
les.

While the a

elerated �uid under the rolling wave

is simulated quite well in two dimensions, the impa
t-

ing groups of parti
les are questionable. These small

groups are likely to shatter into droplets, and their

motion is three dimensional. They are also a�e
ted

by a surrounding gaseous phase and surfa
e tension,

whi
h are not modelled in the simulation. However,

two-dimensional simpli�
ation 
aptures most of the

features of the �ow well, espe
ially in the early phase

of the solution.

4. Conclusion

This paper presents a way of pressure evaluation in

the weakly 
ompressible SPH method. It was su
-


essfully validated using experimental data from the

dam break problem and used to determine the pres-

sure distribution along the downstream verti
al wall

and the total for
e a
ting on this wall during the dam

break.

Comparison between experimental and numeri
al

results showed a good agreement, and therefore the

proposed model and pressure evaluation te
hnique


ould be used. The 
omputed pressure distribution

and the total for
e were analysed, and a 
onne
tion

between kinemati
s and dynami
s was investigated.

An interesting �nding is that there is a peak of total

for
e o

urring shortly after the initial impa
t. How-

ever, its magnitude is relatively small 
ompared to

the for
e a
ting later. Another remarkable dis
overy

is that the pressure peak value appears very shortly

after the surge impa
t, but the maximal total for
e

o

urs mu
h later, during the rolling wave impa
t.

The future work should investigate the in�uen
e

of the position of the downstream verti
al wall on the

pressure distribution and the total for
e. A question

is whether these fun
tions 
hange only quantitatively,

or if there is a qualitative 
hange at a 
ertain point.

Another interesting issue is if there is a distan
e of

the downstream verti
al wall at whi
h the total for
e

rea
hes its extreme value. This information might

be
ome useful for designing wave breakers or other

stru
tures. Even a relatively simple simulation simi-

lar to the one presented here 
ould answer these ques-

tions, as illustrates the presented work.

Acknowledgement

This work was supported by the Grant Agen
y of

the Cze
h Te
hni
al University in Prague, grant No.

SGS18/124/OHK2/2T/12.

Nomenclature

Subs
ript indi
es i and j denote parti
les, indi
es

m and n denote time steps, index 0 labels referen
e

value, and index S labels sensor.

~A oriented area ve
tor (m2)
c speed of sound (m · s−1)
D arti�
ial di�usion term (kg ·m−3 · s−1)
d number of spatial dimensions (1)
~F for
e ve
tor (N)
~f for
e per unit mass ve
tor (m · s−2)
h smoothing length (m)
m mass (kg)
P non-dimensional pressure (1)
p pressure (Pa)
R dimensionless distan
e (1)
T non-dimensional time (1)
t time (s)
~v velo
ity ve
tor (m · s−1)
W smoothing fun
tion (m−d)
~x position ve
tor (m)
Y non-dimensional horizontal dimension (1)
y horizontal dimension (m)
z transverse dimension (m)

γ equation of state exponent (1)
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δ arti�
ial di�usion 
oe�
ient (m2)
Φ non-dimensional for
e (1)
Π arti�
ial vis
osity term (kg−1 ·m5 · s−2)
̺ density (kg ·m−3)
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