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Abstrat

This paper presents a solution of a dam break �ow over a dry horizontal bed in two dimensions using the weakly om-

pressible smoothed partile hydrodynamis (SPH) method. This work fouses mainly on the evaluation of pressure and

fores exerted on the downstream vertial wall. First, a pressure evaluation tehnique suitable for weakly ompressible

SPH is desribed. Validation of the tehnique using experimental data follows, and �nally, the pressure distribution

and the total fore on the vertial wall is evaluated. Analysis of pressure distribution and total fore as a funtion of

time is arried out. All physial quantities are onverted into non-dimensional variables for simple omparison with

results in other works.
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1. Introduction

A olumn of liquid released from a tank by sudden

removing of one of its walls o�ers a varied palette of

phenomena to be studied, and it is quite impressive

from the visual point of view. These might be the

main reason why it has been investigated so many

times in many di�erent modi�ations and by many

di�erent approahes and methods.

The authors most often fous on the kinematis

of the �ow. The fundamental experimental work on

this topi by Martin et al. was dealing with the surge

front position and the height of the olumn as a fun-

tion of time [1℄. Experimental kinemati data were

used for validation of numerial methods for free sur-

fae �ow, e.g., the volume of �uid for �nite volume

method [2℄, smoothed partile hydrodynamis [3℄, or

moving-partile semi-impliit [4℄.

Not only kinemati behaviour but also dynami

e�ets were taken into aount reently. Pressure

values on vertial downstream wall impated by the

surge were measured in di�erent heights by Zhou et

al. [5℄, Kleefsman et al. [6℄, or Wemmenhove et al.

[7℄. All these works have been used for veri�ation of

numerial methods for free surfae �ow. Lobovský et

al. [8℄ loated the pressure sensors so, that the po-

sitions mathed with the set-ups from the previously

mentioned works and ompared the results. Pressure

and fores were evaluated for validation of SPH mod-

els as well, e.g., Marrone et al. [9℄ and Adami et al.

[10℄. Data from [5℄ were used in both these ases.

In reent works by the author, kinematis of the

solution obtained with the presented SPH method

was proved to be in agreement with experimental data

[11, 12℄. Therefore, this paper fouses on the dynam-

is of the �ow. The �rst goal of this work is to validate

the proposed pressure evaluation tehnique for weakly

ompressible SPH using experimental data from [8℄.

The subsequent goal is to use this tehnique to evalu-

ate pressure on the downstream vertial wall after the

surge impat and total pressure load. The following

analysis identi�es interesting or important moments

of the proess and links them with �ow kinematis.

2. Method

2.1. Weakly compressible SPH

Smoothed partile hydrodynamis is a mesh-free par-

tile method. Its Lagrangian nature makes it parti-

ularly suitable for transient multiphase problems. A

very brief desription of the method with emphasis on

parts in�uening pressure evaluation is given in the

following paragraphs. For more detailed information

see for example [13℄.

One of the key onepts of the SPH is so-alled

weight funtion. In this work, trunated Gaussian

funtion is employed. It is usually written as

W (R, h) =







π−
d
2 h−de−R2

if R < 3

0 if R ≥ 3
, (1)

where h is so-alled smoothing length, d is number of

spatial dimensions, and R = |~xj − ~xi|/h. Vetor ~x is

spatial oordinate and indies i and j denote inter-

ating partiles.

The governing equations of ompressible and in-

visid �uid motion in SPH disretized form are

D̺i
Dt

= ̺i
∑

j

mj

̺j
(~vi − ~vj) · ∇Wij +Di , (2)

D~vi
Dt

= −
∑

j

mj

(pj
̺2j

+
pi
̺2i

+Πij

)

∇Wij + ~fi , (3)

where ̺, ~v, p, m, and t denote density, veloity, pres-

sure, mass, and time. Other symbols

~f , Π, and D are

the intensity of external body fore, arti�ial visosity

term, and arti�ial mass di�usion term.

Sine the �uid is modelled as ompressible, an

equation of state is needed to lose the system of

equations. A popular hoie is equation in the form

p =
c2̺0
γ

[

( ρ

̺0

)γ

− 1

]

, (4)
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where c is speed of sound, ̺0 is referene density, and
γ is exponent of the equation. Exponent γ = 7 is usu-
ally hosen for liquids. The speed of sound ould be

set to its atual physial value, but this hoie would

demand very small time steps. Maximal time step for

numerial stability of an expliit integration sheme is

indiretly proportional to the speed of sound. There-

fore, a good hoie proved to be a value about ten

times higher than the maximal veloity of the �ow,

whih keeps the �uid almost inompressible while the

integration is reasonably e�etive [3℄.

Arti�ial visosity term is ommonly used Mon-

aghan arti�ial visosity whih ensures numerial sta-

bility [14℄. Arti�ial mass di�usion smooths density

�eld, whih is naturally very noisy in weakly om-

pressible SPH. It an be written as

Di = 2δhc
∑

j

(̺j − ̺i)
(~xj − ~xi) · ∇Wij

(~xi − ~xj) · (~xi − ~xj)
, (5)

where δ is a oe�ient of arti�ial di�usion [15℄.

The arti�ial di�usion would not smooth density

�eld enough for orret pressure evaluation. An addi-

tional density �eld smoothing tehnique is therefore

employed. It is density reinitialization and it is de-

sribed by the formula

̺i =

∑

j mjWij
∑

j

mj

̺j
Wij

. (6)

It is performed every twenty time steps. Similar teh-

nique applied Colagrossi and Landrini [16℄.

Wall boundary ondition is modelled as free-slip,

and the same dummy partile method was used as

in previous work [12℄. This method preserves the

pressure �eld near the walls su�iently smooth. Free

surfae is formed naturally thanks to Lagrangian na-

ture of the SPH method and appropriate hoie of the

equation of state.

2.2. Pressure and force evaluation

Eah partile has its own pressure value, and it

hanges its position in time. However, we need to ob-

tain pressure value at a ertain point �xed in spae.

Pressure value at this point is obtained by interpola-

tion from neighbouring �uid partiles using formula

pS =

∑

j pjWSj
∑

j WSj

, (7)

where index S denotes pressure sensor. Smoothing

length is hosen the same as for the simulation itself.

Too high value of the smoothing length would lead

to too distant partiles to be onsidered, and the re-

sult would be inorret. The same applies for too low

value beause not enough partiles would be taken

into aount.

Small groups of partiles detah from the main

�uid body. Pressure values of partiles in these

groups are erroneous. That is a partile ount thresh-

old is de�ned. Pressure reading is arried out only if

the number of partiles in�uening the sensor is above

this threshold. An appropriate value appears to be

50% of the maximal potential number of in�uening

partiles.

The pressure signal from the sensor is still very

noisy, and high frequenies have to be suppressed.

As a low-pass �lter is used weight funtion in the

time domain where d = 1 and smoothing length h
is replaed by smoothing time period τ . Choie of

this period is problem dependent. It has to suppress

numerial noise but should not smooth out physial

phenomena. The time �ltering an be written

pSm =

∑

n pSnWmn
∑

n Wmn

, (8)

where indies m and n denote time steps. Moreover,

orret sampling has to be kept in mind beause alias-

ing an our. Reading the pressure value every �fth

integration step, proved to be su�ient to apture the

highest frequenies in the signal.

The total fore ating on a wall is a sum of pres-

sure values multiplied by the orresponding areas of

the pressure sensors. In mathematial notation this

is

~F =
∑

S

pS ~AS . (9)

The area AS is dependent on a distribution of the

sensors. Distanes between the sensors are hosen

the same as the initial �uid partile spaing.

3. Results

3.1. Problem description

The solved problem orresponds to the experimen-

tal apparatus used in [8℄. The numerial solution is

performed in two dimensions and all important di-

mensions inluding the plaement of pressure sensors

P1-P4 displays Figure 1.

Fig. 1. Sheme of the problem with positions of the pres-

sure sensors. Dimensions in millimetres.

The �uid domain is divided into 20 000 idential

partiles. A solution using a oarser resolution was

omputed as well. There was virtually no di�erene

in the kinematis of the �ow, but pressure values were

slightly di�erent beause the size of the domain of in-

�uene of a pressure sensor is resolution dependent.

For the sake of easier omparison with other

experimental or numerial results, non-dimensional

variables are de�ned and used from now on. Non-

dimensional time, vertial dimension, pressure, and

fore are de�ned as

T = t

√

|~g|

y0
, (10)

Y =
y

y0
, (11)

P =
p

̺0|~g|y0
, (12)

Φ =
2|~F |

̺0|~g|y20z0
, (13)
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where ~g is the gravity aeleration vetor, y0 is the

initial liquid olumn height, and z0 is the width of

the olumn, whih is unity in a two-dimensional ase.

De�nition of non-dimensional fore gives unity value

for a hydrostati load on a retangular vertial wall

of height y0 = 300 mm.

3.2. Validation of the pressure evaluation method

Four pressure sensors P1 - P4 are plaed on the ver-

tial wall at non-dimensional height 0.01, 0.05, 0.1,
and 0.267 respetively. Pressure values as funtions

of time at these given points were evaluated and om-

pared with the experimental results from [8℄. Both

experimental and numerial data are plotted in Fig-

ure 2.

In the experiment, the highest pressure value o-

urs at the lowest sensor P1 immediately after the

surge impat, and the pressure value drops after-

wards. Two higher sensors P2 and P3 give lower max-

imal pressure, and these peaks are not as sharp as the

�rst one. Furthermore, they are slightly shifted to-

wards later times. The fourth sensor shows a gradual

pressure rise without a notieable peak. The pres-

sure at all four sensors rises again slightly at about

T = 5.8. This rise is aused by the impat of the

rolling wave, whih emerges during the proess.

Peak value at P1 is slightly overestimated, while

maximal value at P3 is predited lower than the ex-

perimental value. The pressure at P4 rises slower, but

it reahes the experimental value at about T = 4.5.
Inrease in pressure aused by the rolling wave im-

pat is notieable as well. However, it ours later

than in the experiment.

The qualitative agreement of numerial and ex-

perimental data is very good overall; all the impor-

tant phenomena are aptured properly. From the

quantitative point of view, the result is good. The

di�erene between the simulation and the experiment

does not exeed 15% for sensors P1 - P3. The worst

level of agreement is for the highest sensor P4; the dif-

ferene is up to 50%. Overall, pressure data obtained

from the simulation an be used to predit pressure

load, at least from a qualitative perspetive.

3.3. Evaluation of pressure distribution and force

Total non-dimensional fore on the downstream ver-

tial wall as a funtion of non-dimensional time dis-

plays Figure 3. Pressure distribution as a funtion of

time in non-dimensional variables shows Figure 4.

3 4 5 6 7
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0.4

0.6
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1

1.2

1.4
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Fig. 3. Non-dimensional fore ating on the downstream

vertial wall as a funtion of non-dimensional time.

Maximal pressure value ours immediately after

the initial impat (T = 2.48), and it is limited to a

very small area near the bottom of the wall (Figure

5). Its magnitude is almost four times bigger than

hydrostati pressure aused by a liquid olumn of the

initial height. The total fore is in�uened by two

major fators. The �rst one is the maximal pres-

sure value in the orner of the tank, and the other

is the overall area of the wall a�eted by the liquid.

The pressure peak gradually vanishes while the over-

all area a�eted by the liquid inreases as the thik-

ness of the liquid layer impating the wall grows and

a jet is formed along the wall. As a result, a peak of

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
T (1)

0

0.5

1

1.5

2

2.5

3

3.5

P
 (

1)

P1 simulation
P2 simulation
P3 simulation
P4 simulation
P1 experiment
P2 experiment
P3 experiment
P4 experiment

Fig. 2. Non-dimensional pressure as a funtion of non-dimensional time at sensors P1 - P4. Comparison of the

numerial and the experimental data from [8℄
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Fig. 4. Distribution of non-dimensional pressure along the downstream vertial wall as a funtion of non-dimensional

time.

total fore shows when the pressure in the orner is

relatively low (T = 2.80), but the liquid a�eted area

is already signi�ant (Figure 6). The magnitude of

the fore peak is less than one half of the hydrostati

fore aused by a liquid olumn of the initial height.

A drop in the total fore follows as the pressure peak

further dereases. However, the pressure a�eted area

of the wall grows fast, and the total fore grows to-

gether with it. The total fore reahes higher a value

than the �rst peak after a while.

1.2 1.3 1.4 1.5 1.6
x (m)

0

0.05

0.1

y
 (

m
)

Fig. 5. Detail of the solution for T = 2.48. Pressure

reahes its maximal value.
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m
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Fig. 6. Detail of the solution for T = 2.80. Total fore

reahes its �rst peak.

The vertial jet gradually loses its momentum, es-

peially its higher parts. However, the liquid from the

bottom part of the tank still �ows upwards along the

vertial wall. Consequently, a bulge of liquid appears

on the wall (Figure 7). It leads to a relatively sudden

inrease in the liquid a�eted area, and it is well no-

tieable in the pressure distribution at about T = 4.6.
On the other hand, this phenomenon does not learly

appear in the evolution of the total fore. The total

fore gradually rises from its loal minimum without

any notieable hange in its gradient.

1.2 1.3 1.4 1.5 1.6
x (m)

0

0.05

0.1

0.15

0.2
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0.3
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0.45

0.5

y
 (

m
)

Fig. 7. Detail of the solution for T = 4.60. The bulge on

the vertial wall.

A rolling wave evolves from the bulge as shown if

Figure 8. As the tip of the rolling wave approahes

the surfae, the total fore on the wall still gradu-

ally inreases. Just before the impat, the total fore

reahes the magnitude about twie as big as the peak



Student's Conferene 2019 | Czeh Tehnial University in Prague | Faulty of Mehanial Engineering

ourring right after the impat. That means that

it almost reahes the same magnitude as the hydro-

stati fore aused by a liquid olumn of the initial

height. The liquid a�eted area of the wall gradually

dereases.

1.2 1.3 1.4 1.5 1.6
x (m)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

y
 (

m
)

Fig. 8. Detail of the solution for T = 5.75. The rolling

wave.

As the jet further desends, the liquid a�eted

area gradually dereases. There are two signi�ant

peaks present at about T = 6.12, and T = 6.50 in the

pressure distribution, and they strongly a�et the to-

tal fore as well. Groups of partiles impating the

surfae very lose to the wall generate these peaks.

These partiles were ejeted from the main �uid body

in the initial stage of the surge impat. However,

the rise in total fore is not aused by these impats

alone. The pressure inreases beause the �ow under

the rolling wave aelerates towards the right wall af-

ter the rolling wave impats.

1 1.1 1.2 1.3 1.4 1.5 1.6
x (m)

0

0.1

0.2

0.3

y
 (

m
)

Fig. 9. Detail of the solution for T = 6.50. Inrease in

total fore aused by the aelerated �ow under the rolling

wave and the impating partiles.

While the aelerated �uid under the rolling wave

is simulated quite well in two dimensions, the impat-

ing groups of partiles are questionable. These small

groups are likely to shatter into droplets, and their

motion is three dimensional. They are also a�eted

by a surrounding gaseous phase and surfae tension,

whih are not modelled in the simulation. However,

two-dimensional simpli�ation aptures most of the

features of the �ow well, espeially in the early phase

of the solution.

4. Conclusion

This paper presents a way of pressure evaluation in

the weakly ompressible SPH method. It was su-

essfully validated using experimental data from the

dam break problem and used to determine the pres-

sure distribution along the downstream vertial wall

and the total fore ating on this wall during the dam

break.

Comparison between experimental and numerial

results showed a good agreement, and therefore the

proposed model and pressure evaluation tehnique

ould be used. The omputed pressure distribution

and the total fore were analysed, and a onnetion

between kinematis and dynamis was investigated.

An interesting �nding is that there is a peak of total

fore ourring shortly after the initial impat. How-

ever, its magnitude is relatively small ompared to

the fore ating later. Another remarkable disovery

is that the pressure peak value appears very shortly

after the surge impat, but the maximal total fore

ours muh later, during the rolling wave impat.

The future work should investigate the in�uene

of the position of the downstream vertial wall on the

pressure distribution and the total fore. A question

is whether these funtions hange only quantitatively,

or if there is a qualitative hange at a ertain point.

Another interesting issue is if there is a distane of

the downstream vertial wall at whih the total fore

reahes its extreme value. This information might

beome useful for designing wave breakers or other

strutures. Even a relatively simple simulation simi-

lar to the one presented here ould answer these ques-

tions, as illustrates the presented work.
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Nomenclature

Subsript indies i and j denote partiles, indies

m and n denote time steps, index 0 labels referene

value, and index S labels sensor.

~A oriented area vetor (m2)
c speed of sound (m · s−1)
D arti�ial di�usion term (kg ·m−3 · s−1)
d number of spatial dimensions (1)
~F fore vetor (N)
~f fore per unit mass vetor (m · s−2)
h smoothing length (m)
m mass (kg)
P non-dimensional pressure (1)
p pressure (Pa)
R dimensionless distane (1)
T non-dimensional time (1)
t time (s)
~v veloity vetor (m · s−1)
W smoothing funtion (m−d)
~x position vetor (m)
Y non-dimensional horizontal dimension (1)
y horizontal dimension (m)
z transverse dimension (m)

γ equation of state exponent (1)
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δ arti�ial di�usion oe�ient (m2)
Φ non-dimensional fore (1)
Π arti�ial visosity term (kg−1 ·m5 · s−2)
̺ density (kg ·m−3)
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