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Abstract 

The main aim of this work is the design and testing of a predictive control algorithm based on the echolocation behavior of bats. The 

first part of the paper describes the basic principles of model predictive control. The next part of the work is devoted to the bat 

algorithm. It describes the working method of the optimization algorithm based on the behavior of bats, its pseudocode, and describes 

the implementation of this algorithm in the model predictive controller. The third part of the paper is devoted directly to simulating 

and testing the predictive control algorithm. The proposed and programmatically executed predictive control is simulated in a linear 

SISO (Single-Input-Single-Output) system using the MATLAB programming environment.   
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1. Model Predictive Control 

Model predictive control is an advanced method for pro-

cess control that has been used in industrial processes, 

chemical plants and oil refineries since the 1980s. The 

term MPC does not specify a management strategy, but 

define a wide range of control methods that explicitly use 

a process model to obtain a control signal by minimalizing 

a cost function. These methods can be characterized by 

the following common features [1]: 

- Directly use of the model for predicting process out-

puts in future time intervals 

- Calculation of the control sequence to minimizing a 

cost function 

- Displacement of the prediction horizon at each 

timestep 

- Reiteration of the same calculation over updated data 

at each timestep   

MPC is a modern method of controlling, but this 

method is not perfect. That’s why it has several drawbacks 

in comparison with classic methods. The most important 

one is that the mathematical model of process must be de-

fined and this model has a great influence on the quality 

of regulation [1]. 

1.1. MPC Strategy 

The basic principle of MPC can be described by Fig. 1.1. 

1) The future outputs of a controlled system are pre-

dicted using the process model at each moment k for 

a specified horizon N (prediction horizon). These 

predicted outputs yp(k + i), for i = 1…N depend on 

the known values of inputs and outputs up to the mo-

ment k and on the future control signals up(k + i - 1). 

2) These future control signals are calculated by opti-

mizing a criterion to keep the process as near as pos-

sible to the reference trajectory w(k + i). Where ref-

erence trajectory may be the setpoint itself or its close 

approximation. As a criterion for optimization is usu-

ally used a variance between the predicted trajectory 

of the controlled variable and its desired course.  

3) Only the control signal up(k) is transmitted to the con-

trolled process because the value of a controlled var-

iable y(k + 1) is known and the remaining values of 

the control signal must be counted again. In other 

words, the first step is repeated.  

  

Figure 1.1. MPC Strategy (Reprinted from [1]) 

  

To implement this strategy could be used the basic struc-

ture of the controller that is shown in Fig. 1.2. 

This deterministic model is used to predict future out-

puts of the system. This prediction is based on the past and 

actual values and on proposed future values of control sig-

nal. This chosen model on the controlled process plays an 

important role in the control because it must be able to 

capture the process dynamic and be sufficient simple for 

implementation and understanding.   

The optimizer is another essential part of the predic-

tive control structure. It provides action signals (inputs) to 

the model. These inputs are calculated and optimized con-

sidering their influence on the cost function. If this cost 

function is quadratic its minimum can be obtained as a 
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linear function of past inputs, past outputs and future ref-

erence trajectory.  

 

Figure 1.2. Basic structure of MPC (Reprinted from [1]) 

To help understand the basic ideas that have been used in 

the design of the predictive control, we examine a similar 

strategy used by car drivers. The driver knows the refer-

ence trajectory of the car for the specified distance and 

knows characteristics of the vehicle. That’s why the driver 

can decide which control action and with what intensity 

to use (gas pedal, brakes or steering wheel) to drive the 

desired trajectory. At any moment the driver makes only 

the first control action, which can help the driver recog-

nize the car’s response and decide which control variable 

(gas pedal, brakes or steering wheel) and with which value 

will be used in the next timepoints. 

2. Control Algorithm Design 

As it was said in a previous chapter, optimizer is a very 

important part of model predictive controller. That’s why 

an algorithm which is implemented into optimizer plays 

an important role and significantly affects the control pro-

cess. Various types of optimizing algorithms can be used, 

but the main aim of this project is to design and test Bat 

Algorithm for model predictive control. 

2.1. Bat Algorithm 

2.1.1. Introduction 

Metaheuristic algorithms are now becoming powerful 

methods for solving optimization problems. The majority 

part of these algorithms has been derived from the behav-

iour of physical or biological systems in nature. A new 

metaheuristic method, which is proposed in this paper, is 

based on the echolocation behaviour of bats. That is why 

this method is named Bat Algorithm [2].  

2.1.2. Behaviour of Bats 

Microbats extensively use echolocation to detect prey, lo-

cate their crevices and avoid obstacles in the dark. These 

bats emit a very loud sound pulse and listen for the echo 

that reflects from surrounding objects. Microbats can cor-

relate these pulses according to their hunting strategy. Mi-

crobats use the time delay from the emission of the pulse 

and detection of the echo, the loudness variations of the 

signals and the time difference between their two ears to 

build up three-dimensional map of the surrounding. Bats 

can detect the distance and orientation of the target, type 

of prey and even the speed and direction of the prey such 

as small insects [2].  

2.1.3. Pseudo Code of the Bat Algorithm 

To design bat-inspired algorithm the echolocation charac-

teristics of microbats were idealized. This idealization can 

be written in the form of several rules [2]: 

1) All bats use echolocation to sense distance and they 

also know the difference between food and barriers; 

2) Bats fly randomly with velocity vi at position xi with 

a fixed frequency 𝑓𝑚𝑖𝑛, adjusting loudness A0 and 

wavelength λ to search for food. They can automati-

cally adjust the wavelength of their emitted pulses 

and adjust the rate of pulse emission r=[0,1], depend-

ing on the range of their target.  

3) The loudness varies from a large A0 to a minimum 

constant value Amin. 

Based on this idealization, the basic steps of the Bat Al-

gorithm can be described by the pseudo code shown in 

Fig. 2.1. 

 

Figure 2.1. Pseudo code of the BA (Reprinted from [2]) 

2.1.4. Movement of Virtual Bats 

After idealizing the echolocation characteristics of bats, 

also the rules of bats movement must be defined. In other 

words, must be defined how positions xi and velocities vi 

of microbats in a d-dimentioal search space are updated. 

The new solutions and velocities at the time step k are 

given by 

 𝑓𝑖 = 𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)𝛽, (2.1) 

 𝒗𝒊
𝑘 = 𝒗𝒊

𝑘−1 + (𝒙𝒊
𝑘 − 𝒙∗)𝑓𝑖 , (2.2) 
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 𝒙𝒊
𝑘 = 𝒙𝒊

𝑘−1 + 𝒗𝒊
𝑘 , (2.3) 

where 𝛽 ∈ [0, 1] is a random vector drawn from a uniform 

distribution. And 𝒙∗ is a current best solution (location) 

among all n bats. At each time step, once a solution is se-

lected among the current best solutions, a new solution for 

each bat is generated locally using random walk 

 𝒙𝑛𝑒𝑤 = 𝒙𝑜𝑙𝑑 + 𝜀 ∙ 𝐴𝑘, (2.4) 

Where  𝜀 ∈ [−1, 1] is a random number, while 𝐴𝑘 is the 

average loudness of all the bats at this time step. 

But the loudness 𝐴𝑖 and the rate 𝑟𝑖 must be also up-

dated accordingly as the iterations process. Once a bat has 

found its prey, the loudness usually decreases and the rate 

of pulse emission increases. These changes can be given 

by 

 𝐴𝑖
𝑘+1 = 𝛼𝐴𝑖

𝑘,       𝑟𝑖
𝑘+1 = 𝑟𝑖

0[1 − exp (−𝛾𝑘)] , (2.5) 

where 𝛼 and 𝛾 are constants. And for any 𝛼 ∈ (0, 1) and 

𝛾 ∈ (0, ∞) we have 

 𝐴𝑖
𝑘 → 0,   𝑟𝑖

𝑘 → 𝑟𝑖
0, 𝑎𝑠 𝑘 → ∞ (2.6) 

And if minimum constant value of loudness is 𝐴𝑚𝑖𝑛 = 0, 

it means that a bat has found the prey and temporary stop 

emitting any sound [2]. 

2.2. Bat Algorithm 

2.2.1. Solutions Definition 

To use the BA in predictive control, it is necessary to de-

termine exactly what the algorithm will serve for. This al-

gorithm works as an optimizer for predictive controller 

and the main task of the BA algorithm for predictive con-

trol of the system is to find the best (optimal) control var-

iables u(k). These control variables route the output of the 

controlled dynamic system to the reference trajectory 

w(k).  

From the point of view of regulation, a more appropri-

ate method of control is to search for the difference of the 

control variable ∆𝑢(𝑘), rather than its absolute value 

𝑢(𝑘). In this case, the solution vectors xi for the BA will 

be given as a sequence of differences of the control varia-

ble, and the length of these vectors will be equal to the 

prediction horizon N 

 𝒙𝒊 = [∆𝑢(𝑘), ∆𝑢(𝑘 + 1), … , ∆𝑢(𝑘 + 𝑁 − 1)]𝑇 (2.7) 

To optimize and reduce the requirements for the control 

equipment, it was decided to use a limited number of pos-

sible differences of the control variable. The values of 

these differences can be written as a vector ∆𝑼𝟎, that is 

calculated by 

  ∆𝑼𝟎 =
𝑤𝑈−𝑤𝐿

2
∙ [−10, −5, −2, −1, 0, 1, 2, 5, 10] (2.8) 

where 𝑤𝑈 and 𝑤𝐿  represent the the upper and the lower 

limits of the proposed control area of the output variable. 

But the distribution of elements in the vector ∆𝑼𝟎 is not 

uniform. This negatively affects the compilation of a new 

solution by randomly selection of the elements from a 

vector ∆𝑼𝟎. Because of this, the algorithm works with in-

dices of the ∆𝑼𝟎 during the creation of new solutions. But 

when calculating the cost function, BA uses the vector el-

ements corresponding to their indices.  

2.2.2. Cost Function 

As mentioned above, the main aim of the BA is to achieve 

the reference trajectory in the best (optimal) way. In other 

words, the algorithm must minimize the difference be-

tween the required and the real value. Therefore, it is ap-

propriate to use a cost function in the form 

 𝐶𝐹𝑘 = ∑ (𝑤(𝑛) − 𝑦(𝑛))2𝑘+𝑁
𝑛=𝑘+1 , (2.9) 

3. Algorithm Simulation 

3.1. Selection of the process model 

A linear continuous mathematical model was chosen from 

[3] (in Czech). It is the SISO system and it is given by a 

transfer function (3.1). This continuous model was con-

verted into discrete-time model (3.2) with sample time 

𝑇 = 0.05 𝑠 using the MATLAB function. 

 𝐺(𝑠) =
𝑠+230

(𝑠+9)(𝑠+11)
=

𝑠+230

𝑠2+20𝑠+99
  (3.1) 

 𝐺(𝑧) =
0.2378𝑧 + 0.1183

𝑧2−1.215𝑧 + 0.3679
  (3.2) 

The model to be used in the control system design is taken 

to be a state-space model. By using a state-space model, 

the current information required for predicting ahead is 

represented by the state variable at the current time [4]. A 

SISO system can by described by 

 𝒙𝒎(𝑘 + 1) = 𝑨𝒙𝒎(𝑘) + 𝑩𝑢(𝑘) (3.3) 

 𝑦(𝑘) = 𝑪𝒙𝒎(𝑘) + 𝑫𝑢(𝑘) (3.4) 

where 𝒙𝒎 is the state variable vector. Using the MATLAB 

function, discrete-time model (3.2) was converted into a 

state-space model with the state variable vector 𝒙𝒎(𝑘) =
[𝑥𝑚1(𝑘), 𝑥𝑚2(𝑘)]𝑇 and with the system matrices 

 𝑨 = [
1.215 −0.7358

0.5 0
] , 𝑩 = [

0.5
0

], (3.5) 

 𝑪 = [0.4757     0.4732], 𝑫 = 0 (3.6) 

3.2. Simulation of Predictive Control  

In this part of the work, several simulations of predictive 

control of the process are described. The model for simu-

lations was chosen and transformed into a state-space 

model in the previous chapter.  

All simulations were performed with the same param-

eters of the BA. The most important parameters are: pre-

diction horizon 𝑁 = 10, number of bats 𝑛 = 80, number 

of generations 𝑁𝑔𝑒𝑛 = 10. To test the control process us-

ing the designed Bat Algorithm for MPC, two reference 

trajectories were chosen. The first reference trajectory is 

a sequence of constant pulses.  
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The control process of the system is shown in Fig. 3.1. 

The second reference trajectory is the sine-graph and the 

process is shown in Fig. 3.2.  

A very important criterion for estimating the algorithm 

of predictive control is the time for performing calcula-

tions in each timestep. This criterion allows not only to 

evaluate the algorithm, but also to determine the processes 

in which it can be used. Measured average cycle time dur-

ing the simulations was 0,35 seconds.  

 4. Conclusion 

The aim of this project was the study the Bat Algorithm, 

design the algorithm for Model Predictive Control based 

on the BA and simulation of the algorithm with a linear 

Single-Input-Single-Output system.  

According to the results in the previous section I can 

conclude, that the Bat Algorithm for MPC proved to be 

excellent in all test performed. During the tests it was 

proved that the designed algorithm quickly searches for 

an optimal solution and optimizes this solution in every 

timestep. This property of the algorithm is well displayed 

in cases where the reference trajectory is not constant. 

Due to prediction control of the system, the BA starts to 

change the control variable before the reference trajectory 

changes. 

Up to this point, within the project, the work and test-

ing of the algorithm was simulated only. But based on the 

results of simulations, we can assume that the designed 

algorithm will work well with real processes. The use of 

BA in real laboratory work is one the next stage of the 

project. Another stage of the project is the simulation with 

non-liner systems, because the behavior of the algorithm 

with more complex, non-linear systems can be very inter-

esting. 
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Figure 3.1. Control process with w(k) as constant pulses  
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Figure 3.2. Control process with w(k) as sine-graph 
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Symbols 

𝐴 loudness (dB) 

𝐴𝑜 original value of loudness (dB) 

𝐴𝑚𝑖𝑛 minimal value of loudness (dB) 

𝐶𝐹 cost function (-) 

𝑓 pulse frequency (Hz) 

𝐺(𝑠) continuous transfer function (-) 

𝐺(𝑧) discrete transfer function (-) 

𝑛 number of bats (-) 

𝑁 prediction horizon (-) 

𝑁𝑔𝑒𝑛 number of generations (-) 

𝑟 rate of pulse emission (-) 

𝑢 input of the system (-) 

𝑢𝑝 predicted input of the system (-) 

𝑤 reference value (-) 

𝑦𝑝 predicted output of the system (-) 

𝑦 output of the system (-) 

λ wavelength (m) 

References 

 

[1]  CAMACHO E.F., BORDONS C., “Model Predictive 

Control. 2nd ed.,” 2007. [Online]. Available: 

http://een.iust.ac.ir/profs/Shamaghdari/MPC/Resources. 

[Accessed 12 4 2017]. 

[2]  YANG Xin-She, Nature-inspired metaheuristic 

algorithms. 2nd ed., Frome: Luniver Press, 2010.  

[3]  T. BAROT, Prediktivní řízení procesů s rychlou 

dynamikou, Zlín: Univerzita Tomáše Bati ve Zlíně. 

Fakulta alpikované informatiky. Automatické řízení a 

informatika, 2016.  

[4]  L. WANG, Model Predictive Control System Design and 

Implementation Using MATLAB, London: Springer-

Verlag London Limited, 2009.  

 

 
 

 


