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Abstract
This paper is focused on the numerical solution of coupled mechanical-acoustical problem. The goal is to investigate
the influence of sound generated by vocal fold vibration and compared this contribution with acoustic results generated
by the aerodynamic mechanism. Here, the results of earlier simulation of fluid-structure interaction (FSI) are used to
obtain vocal fold vibration and the backward coupling from acoustic field to mechanical is neglected. Then the coupled
problem reduces purely to solution of wave equation with prescribed interface acceleration as boundary conditions.
The FSI problem as well as acoustic problem is solved by the finite element method based solver, which is developed
in-house. For simulation of open-boundary problem the so called perfectly matched layer technique is used.
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1. Introduction
The human voice production is very interesting phe-
nomenon, which is not fully understand yet. Gen-
eral theory assumes, see [1], that the basic acousti-
cal signal is produced by vocal folds excited by the
fluid flow. This signal propagates then through vocal
tract and it is finally articulated in mouth into form
of human speech. Here, we will considered only the
mechanism of the basic acoustical signal formation.
There are described three basic physical principles of
sound production.

The first principle represents the pulsating jet
through glottis, the narrowest part of channel. The
modulation of fluid flow is caused by opening and
closing gap between both vocal folds. This phe-
nomenon plays main role in acoustic signal produc-
tion, see [2] or [3]. The second principle is connected
with the turbulence downstream of glottis. The sep-
aration of flow appears periodically near the orifice
formed by vocal folds and it creates quite complex
vortex structures in flow. These structures can be
associated to the broadband acoustic spectrum. The
third principle is the vibro-acoustic sound generation.
The vibration of vocal fold interface represents addi-
tional acoustic source proportional to interface accel-
eration in normal direction, i.e. it has different ori-
gin than first two aerodynamic sound sources. This
sound source should have lower magnitude neverthe-
less it will be studied in detail in this work.

2. Mathematical model
Let restrict us for the purpose of simplicity to two
dimensional problem. In following paragraphs are
described governing equations of acoustics, coupled
vibro-acoustic problem and finally our modelling ap-
proach.

2.1. Acoustics

The acoustic wave propagation in homogeneous me-
dia represented by domain Ωa is described by the par-

tial differential equation in the form(
1
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)
pa = 0, x ∈ Ωa, t ∈ (0,T) (1)

where pa(x, t) is the sought acoustic pressure and c0
is speed of sound. Problem (1) is closed with zero
initial conditions and the following combinations of
boundary conditions are considered:

a) pa(x, t) = 0, x ∈ ΓDir, t ∈ (0,T)

b)
∂pa(x, t)

∂n
= 0, x ∈ ΓWall, t ∈ (0,T) (2)

c)
∂pa(x, t)

∂n
= −ρ0

∂vn
∂t

, x ∈ ΓW0
, t ∈ (0,T)

d) PML approach.

The boundary condition (2 a)) is called sound soft
because it stands for farfield boundary with no reflec-
tion. The boundary condition (2 b)) is called sound
hard because it expresses presence of walls with per-
fect (full) reflection of acoustic waves. The wall has
outer unit normal n. This boundary condition can
be further modified to (2 c)) for the case, when the
reflecting boundary is moving, vibrating. Then the
right hand term represents acoustic emission from
surface in the form of time derivative of wall normal
velocity, see e.g. [4]. The Perfectly matched layer
(PML) approach is described below.

2.1.1. PML

In order to simulate the open-boundary problem in
bounded domains the PML technique or Absorbing
boundary condition approach are usually used, see [4].
The PML approach consists of a few additional layers
of elements along the normal direction of boundaries,
which represents interface with open space. Inside
these layers the sound waves are effectively damped
to zero. The most important property is that there is
no reflection at the interface between propagation re-
gion and PML, therefore the name perfectly matched.
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For the formulation and numerical implementation we
refer to [5].

2.2. Vibro-acoustics

The vibro-acoustic problem is coupled problem,
where the vibrating body emits acoustic waves into
surrounding acoustic medium and in reverse its defor-
mation is influenced by the impinging acoustic waves.

2.2.1. Elastic body

The deformation u(x, t) = (u1, u2) of the elastic body
Ωs is governed by equations

ρs
∂2ui
∂t2

−
∂τsij(u)

∂xj
= fi

s in Ωs × (0,T), (3)

where ρs denotes the structure density, the vector
fs = (fs1 , f

s
2 ) is the volume density of an acting force

and the tensor τsij is the Cauchy stress tensor. The
Cauchy stress tensor can be expressed by the gener-
alized Hook law in the form, see e.g. [6]

τsij = λs(div u) δij + 2µsesij , (4)

where λs, µs are Lamé coefficients, the tensor I =
(δij) is Kronecker’s delta and tensor es = (esjk) is the
strain tensor of small displacements.

The formulation of elastic problem (3) is com-
pleted by the zero initial conditions and following
boundary conditions

a) u(x, t) = 0, x ∈ ΓsDir, t ∈ (0,T), (5)
b) τsij(x, t)n

s
j(x) = qsi (x, t), x ∈ ΓW0

, t ∈ (0,T),

where the ΓW0
,ΓsDir are mutually disjoint parts of the

boundary ∂Ωs = ΓW0
∪ ΓsDir and nsj(x) are compo-

nents of the unit outer normal to ΓW0
. The condition

(5 b)) is explained below.

2.2.2. Vibro-acoustic coupling

The both subproblems are coupled via common in-
terface. From the nature of problem the continuity
of velocities and stresses should be preserved across
interface in the normal direction. From the first con-
dition follows

(
∂u

∂t
− va) · n = 0 (6)

and together with linearized momentum conservation
of acoustics in the form ∂va

∂t = − 1
ρ0
∇pa and notation

vn = ∂u
∂t ·n it gets exactly the condition (2 c), i.e. the

boundary condition prescribed to acoustic problem.
The second condition reads

τsij n
s
j = pansj =: qsi (x, t), (7)

so it determines term qsi from condition (2 c), i.e. the
boundary condition for elastic problem.

2.3. Simplification of coupled problem

The vibro-acoustic problem have to be solved as cou-
pled problem, if the intensity of acoustic field is high
and it changes the vibration of elastic body. It is
usually satisfied in a simulation of flapping flags or
loudspeakers. But focus of this paper is paid to the
sound produced by vocal folds vibration, where the
low intensity of acoustic field compared to the energy
of elastic vibration can be assumed. Therefore the
mutual coupling becomes just the forward coupling
from known deformation of interface to acoustic part
of solution, i.e. the problem simplifies to Eq. (1)
together with conditions (2). The results of previ-
ously performed FSI simulation, see [7], are used to
get normal component of velocity at interface ΓW0 .

2.4. Acoustic domain

The acoustic domain is chosen according to the do-
main studied in [8]. Shortly, it is composed of domain
with vocal folds adjusted for CFD computation, vocal
tract model of vowel [u:] based on article [9], farfield
domain and finally enclosed by PML domain. The
scheme of acoustic domain is depicted in Figure 1.

Figure 1. Scheme of acoustic domain with boundaries.
The blue boundary is ΓWall, the red boundary represents
the interface of vocal folds ΓW0 and the pink part is
five layers of PML elements. For exact dimensions see
[8]. Further the position of two microphones (B = [x =
0.05 m, y = 0 m] and C = [x = 0.25 m, y = 0 m]) are illus-
trated.

3. Numerical model

Firstly, the derivation of weak formulation is pro-
vided. Equation (1) is multiplied by test function
η and integrated over the whole acoustic domain Ωa,
which leads to(

1
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)
Ωa

− (∆pa, η)Ωa = 0, (8)

where (·, ·)Ω denotes scalar product in Lebesque
spaces L2(Ω). The application of the Green theorem
together with boundary condition (2) gives us(
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(9)

Finally, the restriction of test functions to finite el-
ement space and seeking approximative solution in
form pah(t, x) =

∑Nh

j=1 γj(t)ηj(x) ∈ Vh ⊂ W 1,2(Ωa),
where W 1,2(Ω) is the Sobolev space and Nh is the
dimension of Vh, yields

Maγ̈ + Kaγ = ba(t), (10)
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where elements of matrices Ma = (ma
ij),Ka = (kaij)

are given as

ma
ij =

(
1

c20
ηi, ηj

)
Ωa

, kaij =

(
∂ηi
∂xj

,
∂ηj
∂xj

)
Ωa

, (11)

and the components of vector ba(t) = (bai ) are

bai =

(
ρ0
∂vn
∂t

, ηi

)
ΓW0

. (12)

System (10) is numerically discretized in time by
the Newmark method with uniform time step ∆t =
T
N , N >> 1.

4. Numerical results

First paragraph of this section describes the results
of FSI simulation followed by the second paragraph
dedicated to sound propagation induced by vibrat-
ing vocal folds. The obtained results are analyzed
and compared with results obtained by aeroacoustic
analogies, i.e. with the sound induced by fluid flow
around vocal folds.

Figure 2. The computational mesh of vocal tract model
with marked different layers of materials and with di-
mensions shown in mm. The point A with coordinates
[11.57mm,−1.50mm] is shown.

4.1. FSI problem

Figure 2 shows the vocal fold (VF) model shape based
on the article [10] composed of four parts with differ-
ent material parameters, see [7]. The fluid parameters
were chosen as for air with 293K. The FSI simulation
was driven by pressure difference between inlet and
outlet ∆p = 1600 Pa. The time step in simulation
was selected as 2.5 · 10−5 s.

After short transition time the stable vibration
of VF have developed. Figure 3 illustrates typical
behaviour of the flow induced vibration of VF. The
Fourier transform shows the excitation of first two
eigenmodes of VF, see 4. This is in good correspon-
dence with results of article [10].

Figure 3. The time evolution of displacement of point A
in y-direction.

Figure 4. The (normalized) Fourier transform of y-
component of point A displacement.

4.2. Vibro-acoustics

From computed VF deformation the interface acceler-
ation was computed and then used for the evaluation
of boundary condition (2 c). Then the wave equation
(1) was solved and the acoustic pressure signal was
stored at two microphone positions, see Fig. 5. First
microphone was located in the end of CFD domain,
the second one in the farfield region, i.e. in front of
the model mouth.

Figure 5. Acoustic pressure monitored in point C in the
farfield region. Dimension of x axis is [s], y axis is [Pa].

The Fourier transform of signal from both micro-
phones are shown in Figures 6 and 7. The frequency
spectrum of acoustic pressure at point B shows that
the most dominant frequencies answer the dominant
frequencies of VF motion, where additionally the fre-
quency of 930Hz is present. The Fourier transform
in point C, i.e. point in the end of vocal tract
model, exhibits the relative strengthening of frequen-
cies 282, 930 and 2550Hz. These frequencies approxi-
mately correspond with the peak of transfer function
of this vocal tract model, see [8], i.e. this behaviour
is expected. Nevertheless it can be stated that the
sound pressure level of sound induced by VF vibra-
tion is a few dB more silent than in the case of flow
induced sound, see Fig. 8, so the investigated fre-
quencies do not play too significant role in compari-
son with airborne sound. The vibrationborne sound
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rather helps to colour voice timbre than to form for-
mants, i.e. its characteristic frequencies.

Figure 6. The normalised Fourier transform of the
acoustic pressure from microphone B.

Figure 7. The normalised Fourier transform of the
acoustic pressure from microphone C.

Figure 8. The normalised frequency spectra of the acous-
tic pressure obtained by aeroacoustic analogies – Lighthill
and PCWE analogy. There are highlighted dominant
frequencies of simulation with arrows and values. The
black vertical lines mark the frequencies 389 Hz, 987 Hz
and 2299 Hz taken from article [9]. Results preprinted
from article [8].

5. Conclusion

The coupled problem of sound emission produced by
vibrating elastic body was mathematically described.
For the purpose of investigation of sound produced
by vocal folds vibration the problem was simplified
to solution of wave equation, where the sound exci-
tation is given by the known normal acceleration of
interface coming from FSI simulation. This approach
can be easily used also for many other technical ap-
plications.

The obtained acoustic pressure and its frequency
spectra mainly copy the dominant frequencies of vo-
cal fold motion. For the microphone in front of mouth
the amplification of frequencies corresponding to the
peak frequencies of vocal tract model can be observed
as it was expected. The resulting sound pressure
level is few dB lower than in the case of flow induced
sound, so the studied frequencies rather creates the
voice timbre than the voice formants.
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