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Abstract 

The aim of the study was to verify a method of determination of stiffness parameters in mass-spring models in the range of large 

deformations. The mass-spring method is based on a mesh of elements. It consists of masses connected by ideal springs. By assign-

ing the spring stiffness coefficient according to (Lloyd, 2007) the model can be given material properties. In this paper the method 

presented in (Lloyd, 2007) was verified for large deflections. A model of a deformable body was created in a program written in 

Python. Several loading conditions were considered. Nodal displacements were determined using Newton-Rhapson's method. The 

results were compared with FEM models - for small deformations and with geometric non-linearity. Simulations confirmed that in 

both cases mass-spring obtain similar results as FEM. The mass-spring method may be applied in large deflections modelling, such 

as in surgical simulations 
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1.Introduction 

Currently the need for numerical modelling of deforma-

ble structures has been observed in biomechanics. Such 

models are very important because they can be used in 

surgical simulations. It imposes a number of require-

ments on them. Soft tissues undergo high deformations, 

which is a limitation for many currently existing meth-

ods. Also, the time needed to get the solution should be 

as short as possible to allow real-time simulations. Some 

of the available modelling methods aren't strictly based 

on physical laws, but there is a growing number of 

methods using mechanical engineering calculation pro-

cedures. They achieve high accuracy of results, but in 

the case of modelling large deformations the calculation 

time is significantly longer.  

Selected numeric modelling methods: 

I. Methods based on material continuum  

• Finite element method (FEM) 

II. Heuristic methods 

• Terzopoulos method [1] 

• Mass-spring system (MSM) 

• Hyperelastic mass-links (HEML) [2] 

III. Hybrid methods 

• Boundary element method (BEM)+ mass-spring 

system [3] 

• Mass-tensor[2] 

 

 

 

Table1.Comparison of properties of selected modelling  

methods. 
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In case of large deflections, crucial in surgery simula-

tion, many methods are difficult to apply. For instance, 

FEM is very expensive computationally and requires a 

lot of time to find a solution. The heuristic methods are 

effective in visualizing deformations, but their results 

may differ from reality.  

One of the most popular approaches in heuristic 

modelling is the MSM. The method uses a mesh of 

springs connecting masses. As the literature indicates, it 

is a fast numerical modelling method of low computa-

tional complexity. One of the key problems in MSM 

simulations lies in assigning the material properties to 

the springs. In [4], a popular method for determining the 
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spring stiffness coefficient based on the Young's modu-

lus is presented. The Authors only briefly mention its 

accuracy under large displacements and deformations, 

which are crucial for surgical simulations. Therefore, the 

aim of the study was to verify the method presented in 

[4] under large deformations and displacements. Using 

this method, a deformable body model was created and 

its response to the set load was checked. Due to the high 

accuracy of the FEM, it was used as a reference method. 

Particular attention was paid to the analysis of large 

deformations. 

 

2. Method 

Firstly, custom software for simulating static MSM 

models was created in Python. Then, several models of 

deformable bodies were tested under static loading con-

ditions. The software can be divided into the following 

subprograms: preprocessor, solver and postprocessor. 

 

Figure1. Implementation of the method into a program written 

in Python 

2.1. Preprocessor 

In the first stage the geometry, the material properties, 

the boundary conditions and the external load were se-

lected using the preprocessor. As mentioned before, 

Young modulus was assigned to the model using the 

method presented in [4]. The study focused on a two-

dimensional model divided into square elements, as seen 

Fig. 2. 

 
 

Figure 2. Single 2D square element used in mass-spring model 

 

In this case, the stiffness coefficients of the springs can 

be computed with (1) and (2), as per [4]: 

 

𝑘𝑒𝑑𝑔𝑒 =
5

16
𝑡𝐸                             (1)                                             

𝑘𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 =
7

16
𝑡𝐸                        (2)                               

where: 

𝑘𝑒𝑑𝑔𝑒 − stiffness coefficient of edge spring(
𝑁

𝑚
), 

𝑘𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 − stiffness coefficient of diagonal spring (
𝑁

𝑚
), 

𝐸 −Young’s modulus (Pa), 

𝑡 −element’s thickness (m). 

The square elements contained: nodes (point masses), 

springs forming the side, and of the diagonal springs. 

The diagonal springs allowed the element resist shearing 

loads. Some nodes were shared by more than one 

element. 

Static cases were considered, hence the principle of 

calculating the displacements in the model was based on 

the assumption that each node was in equilibrium under 

its external load. Therefore, the external forces were 

balanced by the forces generated in the springs. Their 

spring forces were calculated according to the formula 

(3)  

𝑭𝒊𝒏𝒕
𝑖 = 𝑘𝑖𝑗∆𝑙

𝒃𝒔−𝒂𝒔

∥𝒃𝒔−𝒂𝒔∥
,                        (3) 

where: 

𝑭𝒊𝒏𝒕
𝑖 −spring force acting on the node (𝑁), 

𝑘𝑖𝑗 − stiffness coefficient of spring connecting two 

nodes (
𝑁

𝑚
), 

∆𝑙 – the increase of the spring element’s length (m), 

𝑏𝑠 – vector connecting origin with end of spring, 

𝑎𝑠 – vector connecting origin with beginning of spring. 

 

At the preprocessor stage, equilibrium equations were 

written for each node and then collected into a system of 

equations for the whole model.  

2.2. Solver 

In the solver, the previously prepared equation system 

based on (3) was solved using Newton-Rhapson's meth-

od. The positions of the nodes of the deformed body 

were determined. 

2.3. Postprocessor 

Based upon obtained results, the values of the defor-

mations were found by the program. The deformed mod-

el was displayed graphically and the software compared 

the results with FEM. 

 

2.4. Program application  

 

A model of a rectangular deformable body was created 

in the software. Static external load of small and large 

magnitudes was applied in several ways. In each case, 

the displacements of the selected node were examined. A 

similar model was made using FEM in Ansys Work-

bench. The ANSYS models were solved in two ways, 

using linear analysis and taking into account geometric 

non-linearity  

3. Results and discussion 

In order to verify the method presented in [4], a 

rectangular model of deformable body was made using 

mass-spring method. Its geometry, after being divided 
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into elements, is shown in Fig. 3. The node which 

displacements were analyzed was marked with a red dot.  

Figure 3. Undeformed model divided into elements. Red dot is 

a node which displacements are taken into account when com-

paring MSM and FEM 

External forces were applied in two ways: tensile test 

and bending test. Similar models were made in Ansys 

Workbench, a program using FEM in engineering 

simulations. The deformed finite element mesh was 

exported to stl format and then uploaded to the Python 

software for comparison. The diagrams below show the 

FEM mesh in black and the mass-springs in blue. The 

values of the displacements were shown in the force 

dependence diagrams. 

3.1. Stretching 

 

Figure 4. Deformed by stretching  finite element mesh using 

linear analysis (black) together with the deformed spring  mesh 

(blue). 

 

Figure 5. Deformed by stretching  finite element mesh using 

non-linear analysis (black) together with the deformed spring  

mesh (blue). 

 

Figure 6. Plot of analysed node displacement versus stretching 

force 

3.2. Bending 

 

Figure 7. Deformed by bending finite element mesh using 

linear analysis (black) together with the deformed spring  mesh 

(blue). 

 

Figure 8. Deformed by bending finite element mesh using non-

linear analysis (black) together with the deformed spring  mesh 

(blue). 
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Figure 9. Plot of analysed node displacement versus bending 

force. 

3.3. Discussion 

On the basis of the obtained results it can be concluded 

that, in the case of small values of external loads the 

displacements obtained with MSM were comparable 

with both, linear and geometric non-linear FEM. For 

larger load magnitudes, when the model was stretched, 

the results were consistent with the linear FEM. When 

the model was bending, results were comparable with 

the non-linear FEM. Depending on the type of load, the 

MSM gives results consistent with FEM either linear or 

with geometric non-linearity. That is why it is worth to 

verify the results obtained for a specific type of load 

before using the mass-spring system method. 

4. Conclusion 

In this paper a verification of mass-spring system model-

ling method was presented. Using the example of a rec-

tangular model, the method was compared with the 

FEM. Similar structures were exposed to the same loads; 

the results obtained, being displacements of nodes, indi-

cate a high potential of this method in modelling both 

small and large deformations. 

MSM can be used in real-time surgical simulations 

due to its low computational cost and relatively good 

accuracy of results. Soft tissues undergo large defor-

mations, so in this case other methods of numerical 

modelling may turn out to be too complicated in terms of 

calculations - longer time needed to obtain the result. 

Symbols 

𝑘𝑒𝑑𝑔𝑒 − stiffness coefficient of edge spring(
𝑁

𝑚
) 

𝑘𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 − stiffness coefficient of diagonal spring (
𝑁

𝑚
) 

𝐸 −Young’s modulus (Pa) 

𝑡 −element’s thickness (m) 

𝑭𝒊𝒏𝒕
𝑖 −spring force acting on the node (𝑁) 

𝑘𝑖𝑗 − stiffness coefficient of spring connecting nodes 𝑃𝑖  

and  𝑃𝑗  (
𝑁

𝑚
) 

∆𝑙 – the increase of the spring element’s length (m) 

𝑏𝑠 – vector connecting origin with end of spring 

𝑎𝑠 – vector connecting origin with beginning of spring 
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