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Abstrat

In this paper, a numerial simulation of a dam break problem is presented. For this simulation, smoothed partile

hydrodynamis (SPH) method was employed. SPH is a relatively non-onventional method, whih an be used in CFD.

Unlike traditional CFD methods, it uses a Lagrangian framework and it does not utilize omputational mesh for a

spatial disretization. Its Lagrangian nature allows to trak partiular �uid partiles throughout a simulation easily;

this traking an help to desribe some phenomena ourring in a problem. The dam break problem is desribed in

detail and the simulation is ompared with the experimental data whih are available in the literature. In the end, the

results are disussed and some improvements to the program to obtain better results are proposed.
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1. Introduction

A dam break is a relatively simple problem when in

the beginning; initial and boundary onditions are

easy to de�ne. But when the liquid olumn begins to

ollapse situation is not so simple anymore. The free

surfaes emerge and vanish throughout the proess,

and the �ow is determined by inertia fores, whih

dominate over visous and surfae fores. It allows to

use a simple invisid �uid model and still get results

whih are not far from the reality if the free surfae

an be traked appropriately. The mentioned features

of the �ow are the main reason why the dam break

problem is used for testing of CFD programs whih

are intended to be used for free surfae �ow simu-

lations. The problem is naturally three-dimensional

but simulations are often simpli�ed in two dimen-

sions. It is muh less omputationally expensive and

omparison with experimental data is still possible.

The dam break problem was used for validation

of VOF (volume of �uid) method interfae traking

algorithm for FVM (�nite volume method) [1℄, SPH

(smoothed partile hydrodynamis) [2℄, MPS (mov-

ing partile semi-impliit) [3, 4℄, and FEM (�nite el-

ement method) [5℄. The last three mentioned works

ombine both numerial and experimental investiga-

tion of the problem. The problem also served for

omparison between various methods [6℄.

The fundamental experimental work on the dam

break problem was published almost seventy years

ago and it foused mainly on the kinematis of the

�ow [7℄. Reently, an experimental work dealing with

the dynamis of the �ow was published [8℄. These

works provide data whih are suitable for omparison

with numerial results.

In this work, a dam break problem is investigated

using SPH method. Unlike FVM, the most exten-

sively used method in CFD, whih uses the Eulerian

referene frame, SPH is based on the Lagrangian de-

sription of the �ow. Fluid is represented in the form

of partiles with onstant mass and a mesh is not

employed for spatial disretization. Therefore, it is

referred to be one of the so-alled mesh-free parti-

le methods. The Lagrangian nature of the method

was exploited to desribe the phenomena ourring

throughout the proess.

2. Method

The idea of the SPH method originates from an inte-

gral identity

a(~x) =

∫

Ω

a(~x′)δ(~x′ − ~x) dV ′, (1)

where a is an arbitrary funtion de�ned in a three-

dimensional domain Ω and δ is the Dira delta fun-

tion. Vetor ~x denotes oordinates of the spei�

point in Ω and

~x′
is the variable of integration. This

identity an be approximated in ontinuous form by

replaing the Dira delta funtion with smoothing

funtion W (~x′ − ~x, h), where h is smoothing length.

It determines the size of the in�uene domain of the

smoothing funtion. The next step is to substitute in-

tegration by summation over the partiles, where in-

�nitesimal volume dV ′
is replaed by partile volume

expressed asmj/̺j. Thus the disrete approximation

of the funtion is

a(~xi) =
∑

j

a( ~xj)W ( ~xj − ~xi, h)
mj

̺j
. (2)

Indies i and j serve for partile identi�ation. Using
relatively simple proedures, a disrete approxima-

tion of a funtion spatial derivative is obtained in the

form

∇ · a(~xi) =
∑

j

a( ~xj) · ∇W (~xi − ~xj , h)
mj

̺j
. (3)

Note that the indies in the argument of the smooth-

ing funtion W are swapped. This formulation al-

lows transforming any partial di�erential equations

into ordinary di�erential equations. For onveniene,

smoothing funtion gradient is usually written in the

shortened form

∇W (~xi − ~xj , h) = ∇Wij . (4)

In this work, trunated Gaussian smoothing fun-

tion was used. It is usually written in the form

W (R, h) =







π−
d

2 h−de−R2

if R < 3

0 if R ≥ 3
, (5)
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where R = |~xj − ~xi|/h and d is number of spatial di-

mensions. Smoothing length h is set the same as the

initial partile spaing.

2.1. Governing equations

The ontinuity and the momentum equations in the

Lagrangian desription are

D̺

Dt
= −̺∇ · ~v, (6)

Dṽ

Dt
= −

1

̺
∇p+ ~f. (7)

The �uid is onsidered to be ompressible and invis-

id.

The system of equations needs to be losed by

the equation of state. For weakly ompressible SPH

simulations, a popular hoie is the Tait equation of

state. It an be written in the form

p =
c2̺0
γ

[

( ρ

̺0

)γ

− 1

]

+ p0, (8)

where ρ0 is density at pressure p0, c is speed of

sound. Parameter gamma = 7 ensures that even

small hange in density leads to great variation in

pressure. The Tait equation does not onsider depen-

dene on temperature. Sine the hanges in temper-

ature are very small in the proess, this non-physial

assumption is justi�able. This barotropi �uid model

also leads to the fat that the energeti equation is

independent and it does not have to be solved. In-

stead of the physial speed of sound, it is taken a

numerial value whih should be set approximately

ten times higher than expeted maximal �ow velo-

ity in the solved problem [2℄. That keeps variation

in liquid density su�iently low and the �ow an be

regarded as inompressible.

Using tehniques whih originate from the spatial

derivative approximation (3) the governing equations

(6) and (7) are obtained in the disrete form:

D̺i
Dt

= ρi
∑

j

mj

̺j
(~vi − ~vj) · ∇Wij (9)

Dṽi
~Dt

= −
∑

j

mj

(pj
̺2j

+
pi
̺2i

+Πij

)

∇Wij + ~fi, (10)

The symmetry with respet to the indies i and j re-
dues errors related to the partile disretization [9℄.

The term Πij is arti�ial visosity and it serves for

numerial stabilization [10℄. Its value determined by

the expression

Πij = max
[

−
αcijhij

̺ij

(~vi − ~vj) · ~xij

|~xij |2 + εh2
ij

, 0
]

, (11)

where α is tuning parameter and ε is singularity pre-

venting oe�ient. Variables cij , ̺ij , and hij de-

note mean values of the speed of sound, density, and

smoothing length respetively. Vetor ~xij = ~xi − ~xj .

The impat of the arti�ial visosity should be su�-

ient to preserve numerial stability, but should not

indue visosity e�ets in the solution.

2.2. Boundary conditions

There are two types of boundaries in the dam break

problem: free surfae and wall. The free surfae is

traked naturally by partile motion and no speial

treatment is needed. Wall modelling, on the other

hand, is more ompliated in partile methods than in

mesh-based method. In this ase, a very simple wall

model was used. So-alled virtual boundary partiles

are plaed diretly on the wall and generate repulsive

fore �eld ating on the �uid partiles, whih prevents

them from penetrating the wall [2℄. The fore �eld is

in the form of Lennard-Jones potential, thus

~fi = D
[( r0

|~xij |

)p1

−
( r0
|~xij |

)p2
] ~xij

|~xij |2
. (12)

This formula applies only if |~xij | ≤ r0, otherwise

~f = ~0.
The advantage of the desribed way of enfor-

ing boundary onditions is its simpliity. On the

other hand, partiles lose to a boundary are not sur-

rounded by neighbouring partiles equally from all

sides; they su�er from so-alled partile de�ieny.

Consequently, pressure values evaluated near walls

are inorret.

2.3. Time integration

The disretized equations (9) and (10) are ordinary

di�erential equations with the respet to time. To

obtain the solution these equations have to be inte-

grated. In this work, the modi�ed leap-frog algorithm

was employed for this purpose [9℄. The algorithm an

be written

~v
n+ 1

2

i = ~v
n− 1

2

i +∆t
(d~vi
dt

)n

, (13)

ρ
n+ 1

2

i = ρ
n− 1

2

i +∆t
(dρi
dt

)n

, (14)

~x n+1
i = ~x n

i +∆t~v
n+ 1

2

i , (15)

~v n+1
i = ~v

n+ 1

2

i +
∆t

2

(d~vi
dt

)n

, (16)

ρn+1
i = ρ

n+ 1

2

i +
∆t

2

(dρi
dt

)n

, (17)

where indies in supersript denote time step. The

leap-frog algorithm is an expliit integration method

and therefore it is onditionally stable. To determine

the size of the time step, it was used the Courant-

Friedrihs-Lewy ondition. Its form suitable for SPH

stands

∆t ≤ 0.25min
i

hi

ci
. (18)

3. Numerical simulation

The dam break problem was simulated using the

desribed method. The Lagrangian nature of the

method enables to highlight some of the partiles and

it is possible to keep traking them throughout the

simulation. In this ase, highlighted are the partiles

whih reah above the original olumn height. This

partile hoie allows revealing some phenomena o-

urring in the �ow.
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3.1. Initial setup

The initial setup of the problem is in Fig. 1. The liq-

uid olumn initial height η0 = 2 m and initial width

ξ0 = 1 m. It is loated adjaent to the left wall of the

tank. The tank is 4 m wide and both its walls are 3

m tall.

0 1 2 3 4
x (m)

0

0.5

1

1.5

2

2.5

3

y
 (

m
)

fluid particles
highlighted particles
boundary particles

Fig. 1. The dam break problem initial on�guration.

The liquid olumn is formed by 5000 partiles of

equal mass. Gravity is zero in the beginning of the

simulation; the initial values of pressure and density

of all the partiles are p0 and ̺0 respetively. Gravity
is gradually swithed on using the transition funtion

ζ = 0.5{sin[(−0.5 +
t

ttrans
)π] + 1}, (19)

where ttrans is a transient time period [11℄. Dur-

ing this period gravity gradually rises until it reahes

its full magnitude. The transient time period is very

small ompared to the whole proess, thus it does not

a�et the solution.

3.2. Results and discussion

The whole dam break problem proess an be divided

into three phases. In the initial phase, the surge front

propagates until it hits the vertial wall. After that,

the seond phase begins. Its main feature is a pres-

ene of a rolling wave and its interations. In the last

phase, gravity waves move bak and forth in the tank

and liquid motion is gradually damped.

3.2.1. Surge front propagation phase

In the initial phase of the dam break, the liquid ol-

umn ollapsed and the surge front headed towards the

right wall (Fig. 2 and Fig. 3). In both these �gures,

a group of disrupted partiles adjaent to the left wall

is learly visible. Also, the group of highlighted par-

tiles got loser to the surge front ompared to the

initial setup. The explanation for these phenomena

is the fat that the utilized wall boundary ondition

is not a true free-slip boundary ondition. The re-

pulsive fore generated by the boundary partiles is

not exatly normal to the boundary, but it also has a

tangent omponent.

0 1 2 3 4
x (m)

0

0.5

1

1.5

y
 (

m
)

fluid particles
highlighted particles
boundary particles

Fig. 2. The initial phase of the dam break; the surge

front moved towards the right wall. Time t = 0.3 s.
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1
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Fig. 3. The initial phase of the dam break; just before

the surge front hit the right wall. Time t = 0.7 s.

0 0.5 1 1.5 2 2.5 3
T (1)

1

1.5

2

2.5

3

3.5

4

X
 (

1)

SPH simulation
Exp. (Martin 1952)
Exp. (Koshizuka 1996)
Exp. (Hu 2010)

Fig. 4. Dimensionless surge front position as a funtion

of dimensionless time; simulation and experiment om-

parison. Martin 1952 [7℄, Koshiuzuka 1996 [3℄, Hu 2010

[4℄.

The surge front position during the initial phase

was ompared with experimental data previously

published by some other authors (Fig. 4). The om-

parison has to be performed in dimensionless vari-

ables sine the experiments and the numerial simu-

lation were di�erent in their size. Only the olumn

height to width ratio is kept the same (2:1). The di-

mensionless surge front position and time are de�ned

as

X =
ξ

ξ0
, T = t

√

2g

ξ0
(20)
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where ξ is the surge front position and ξ0 is the initial
liquid olumn width.

Disrepanies between the experimental data an

be explained by the di�erent experimental devies,

and measuring methods. The simulation and the ex-

periments seem to be in a good agreement. The im-

perfet free-slip boundary ondition desribed previ-

ously seems to have a little e�et on the �uid motion

globally. The surge front reahed the veloity orre-

sponding to the free fall veloity from the height of

the original liquid olumn (|~v| =
√

2|~g|η0).

3.2.2. Rolling wave phase

The rest of the simulation was ompared with exper-

imental and numerial data from a qualitative point

of view only. The same phenomena are to be found

in both experimental and numerial investigation in

[3℄ as in herein presented simulation. Partiular data

for omparison were hosen with regard to similarity

of both ases.

2.5 3 3.5 4
x (m)

0

0.5

1

1.5

2

2.5

3

y
 (

m
)

fluid particles
highlighted particles
boundary particles

Fig. 5. Detail of the vertial jet formed along the right

wall after the surge front impated the wall. Time t =

1.1 s.

As the surge front reahed the right wall, the

�uid deelerated rapidly. That led to a signi�ant

rise in pressure in the bottom right orner. This

high-pressure domain a�eted the surrounding �uid

whih was aelerated again; in the vertial diretion

mostly. Consequently, a vertial jet was formed along

the right wall (Fig 5). The top of the jet reahes

the height about one and half times greater than the

original olumn height. Some partiles even separate

from the main liquid body and reah the height of

more than twie the original olumn height

Then the top of the jet started losing its momen-

tum, while the bottom part was still moving upwards.

This led to a reation of the rolling wave (Fig. 6). It

moved bak towards the left wall, and its tip hit the

liquid surfae. The impating liquid then rebounded

from the surfae, reating another liquid jet (Fig. 7).

This proess reated losed pokets of void spae.

However, all these empty pokets vanished in a short

time.

2.5 3 3.5 4
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y
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m
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fluid particles
highlighted particles
boundary particles

Fig. 6. Detail of the rolling wave before the impat on

the surfae. Time t = 1.85 s.
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Fig. 7. Detail of the rolling wave after the impat on the

surfae. Void pokets are learly visible. Time t = 2.15 s.

3.2.3. Gravity wave phase

When the wave impated the left wall, a vertial jet

along the wall emerged again, but this time having

signi�antly less momentum (Fig. 8). This amount

of momentum was not enough to reate a rolling wave.

Instead of that, a surfae gravity wave emerged (Fig.

9). This wave re�eted from the walls and the �uid

motion was gradually damped.
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Fig. 8. The impat on the left wall. Created jet is muh

smaller then previously. Time t = 3.3 s.
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Fig. 9. The surfae gravity wave moving towards the

right wall. Time t = 4.5 s.

4. Conclusion and future work

In this work, a dam break problem was solved using

SPH method, whih is a mesh-free partile method.

The method itself is brie�y introdued and some used

algorithms are desribed in detail. The initial phase

of the problem was ompared with experimental data

available in the literature. The numerial results are

in a good quantitative agreement with these data.

The later phases of the simulation were also om-

pared with the experiments and numerial results of

other authors. Only the qualitative omparison ould

be done and the agreement is good again. The phe-

nomena ourring throughout the simulation are de-

sribed in detail. For this purpose, the Lagrangian

nature of the method was exploited; ertain partiles

were traked throughout the simulation.

The urrent implementation of the SPH method

proved itself to be apable of free surfae �ow sim-

ulations. Free surfaes are traked naturally by the

partile motion. The solution overall is in good agree-

ment with the numerial and experimental data of

other authors, despite a very simple method of en-

foring wall boundary ondition. To further improve

the results, a more sophistiated method should be

implemented. Relatively simple and robust methods

are, e.g. [11, 12℄. Both these methods deal with a

partile de�ieny, whih is ruial for evaluation of

variables lose to a wall. The employed weakly om-

pressible approah of modelling inompressible �ow

also leads to strong osillations in the pressure �eld.

Kinematis of the �ow seems not to be a�eted by

these osillations. To redue them, a di�usive term

an be introdued into ontinuity equation [13℄.
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Nomenclature

Subsript indies i and j denote partiles, index 0 la-

bels referene value. Supersript index denotes time

step.

a arbitrary funtion (1)
c speed of sound (m · s−1)
D boundary repulsive fore oe�ient (m2 · s−2)
d number of spatial dimensions (1)
dV ′

in�nitesimal volume (m3)
~f external fore �eld vetor (m · s−2)
~g gravity fore �eld vetor (m · s−2)
h smoothing length (m)
m mass (kg)
p pressure (Pa)
R dimensionless distane (1)
T dimensionless time (1)
t time (s)
~v veloity vetor (m · s−1)
W smoothing funtion (m−d)
X dimensionless surge front position (1)
~x position vetor (m)

α arti�ial visosity oe�ient (1)
γ equation of state exponent (1)
∆t time step (s)
δ Dira delta funtion (m−d)
ε singularity preventing oe�ient (1)
ζ transition funtion (1)
ξ surge front position (m)
Π arti�ial visosity term (kg−1 ·m5 · s−2)
̺ density (kg ·m−3)
η olumn height (m)
Ω domain in d-dimensional spae (md)
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