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Abstra
t

In this paper, a numeri
al simulation of a dam break problem is presented. For this simulation, smoothed parti
le

hydrodynami
s (SPH) method was employed. SPH is a relatively non-
onventional method, whi
h 
an be used in CFD.

Unlike traditional CFD methods, it uses a Lagrangian framework and it does not utilize 
omputational mesh for a

spatial dis
retization. Its Lagrangian nature allows to tra
k parti
ular �uid parti
les throughout a simulation easily;

this tra
king 
an help to des
ribe some phenomena o

urring in a problem. The dam break problem is des
ribed in

detail and the simulation is 
ompared with the experimental data whi
h are available in the literature. In the end, the

results are dis
ussed and some improvements to the program to obtain better results are proposed.
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1. Introduction

A dam break is a relatively simple problem when in

the beginning; initial and boundary 
onditions are

easy to de�ne. But when the liquid 
olumn begins to


ollapse situation is not so simple anymore. The free

surfa
es emerge and vanish throughout the pro
ess,

and the �ow is determined by inertia for
es, whi
h

dominate over vis
ous and surfa
e for
es. It allows to

use a simple invis
id �uid model and still get results

whi
h are not far from the reality if the free surfa
e


an be tra
ked appropriately. The mentioned features

of the �ow are the main reason why the dam break

problem is used for testing of CFD programs whi
h

are intended to be used for free surfa
e �ow simu-

lations. The problem is naturally three-dimensional

but simulations are often simpli�ed in two dimen-

sions. It is mu
h less 
omputationally expensive and


omparison with experimental data is still possible.

The dam break problem was used for validation

of VOF (volume of �uid) method interfa
e tra
king

algorithm for FVM (�nite volume method) [1℄, SPH

(smoothed parti
le hydrodynami
s) [2℄, MPS (mov-

ing parti
le semi-impli
it) [3, 4℄, and FEM (�nite el-

ement method) [5℄. The last three mentioned works


ombine both numeri
al and experimental investiga-

tion of the problem. The problem also served for


omparison between various methods [6℄.

The fundamental experimental work on the dam

break problem was published almost seventy years

ago and it fo
used mainly on the kinemati
s of the

�ow [7℄. Re
ently, an experimental work dealing with

the dynami
s of the �ow was published [8℄. These

works provide data whi
h are suitable for 
omparison

with numeri
al results.

In this work, a dam break problem is investigated

using SPH method. Unlike FVM, the most exten-

sively used method in CFD, whi
h uses the Eulerian

referen
e frame, SPH is based on the Lagrangian de-

s
ription of the �ow. Fluid is represented in the form

of parti
les with 
onstant mass and a mesh is not

employed for spatial dis
retization. Therefore, it is

referred to be one of the so-
alled mesh-free parti-


le methods. The Lagrangian nature of the method

was exploited to des
ribe the phenomena o

urring

throughout the pro
ess.

2. Method

The idea of the SPH method originates from an inte-

gral identity

a(~x) =

∫

Ω

a(~x′)δ(~x′ − ~x) dV ′, (1)

where a is an arbitrary fun
tion de�ned in a three-

dimensional domain Ω and δ is the Dira
 delta fun
-

tion. Ve
tor ~x denotes 
oordinates of the spe
i�


point in Ω and

~x′
is the variable of integration. This

identity 
an be approximated in 
ontinuous form by

repla
ing the Dira
 delta fun
tion with smoothing

fun
tion W (~x′ − ~x, h), where h is smoothing length.

It determines the size of the in�uen
e domain of the

smoothing fun
tion. The next step is to substitute in-

tegration by summation over the parti
les, where in-

�nitesimal volume dV ′
is repla
ed by parti
le volume

expressed asmj/̺j. Thus the dis
rete approximation

of the fun
tion is

a(~xi) =
∑

j

a( ~xj)W ( ~xj − ~xi, h)
mj

̺j
. (2)

Indi
es i and j serve for parti
le identi�
ation. Using
relatively simple pro
edures, a dis
rete approxima-

tion of a fun
tion spatial derivative is obtained in the

form

∇ · a(~xi) =
∑

j

a( ~xj) · ∇W (~xi − ~xj , h)
mj

̺j
. (3)

Note that the indi
es in the argument of the smooth-

ing fun
tion W are swapped. This formulation al-

lows transforming any partial di�erential equations

into ordinary di�erential equations. For 
onvenien
e,

smoothing fun
tion gradient is usually written in the

shortened form

∇W (~xi − ~xj , h) = ∇Wij . (4)

In this work, trun
ated Gaussian smoothing fun
-

tion was used. It is usually written in the form

W (R, h) =







π−
d

2 h−de−R2

if R < 3

0 if R ≥ 3
, (5)
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where R = |~xj − ~xi|/h and d is number of spatial di-

mensions. Smoothing length h is set the same as the

initial parti
le spa
ing.

2.1. Governing equations

The 
ontinuity and the momentum equations in the

Lagrangian des
ription are

D̺

Dt
= −̺∇ · ~v, (6)

Dṽ

Dt
= −

1

̺
∇p+ ~f. (7)

The �uid is 
onsidered to be 
ompressible and invis-


id.

The system of equations needs to be 
losed by

the equation of state. For weakly 
ompressible SPH

simulations, a popular 
hoi
e is the Tait equation of

state. It 
an be written in the form

p =
c2̺0
γ

[

( ρ

̺0

)γ

− 1

]

+ p0, (8)

where ρ0 is density at pressure p0, c is speed of

sound. Parameter gamma = 7 ensures that even

small 
hange in density leads to great variation in

pressure. The Tait equation does not 
onsider depen-

den
e on temperature. Sin
e the 
hanges in temper-

ature are very small in the pro
ess, this non-physi
al

assumption is justi�able. This barotropi
 �uid model

also leads to the fa
t that the energeti
 equation is

independent and it does not have to be solved. In-

stead of the physi
al speed of sound, it is taken a

numeri
al value whi
h should be set approximately

ten times higher than expe
ted maximal �ow velo
-

ity in the solved problem [2℄. That keeps variation

in liquid density su�
iently low and the �ow 
an be

regarded as in
ompressible.

Using te
hniques whi
h originate from the spatial

derivative approximation (3) the governing equations

(6) and (7) are obtained in the dis
rete form:

D̺i
Dt

= ρi
∑

j

mj

̺j
(~vi − ~vj) · ∇Wij (9)

Dṽi
~Dt

= −
∑

j

mj

(pj
̺2j

+
pi
̺2i

+Πij

)

∇Wij + ~fi, (10)

The symmetry with respe
t to the indi
es i and j re-
du
es errors related to the parti
le dis
retization [9℄.

The term Πij is arti�
ial vis
osity and it serves for

numeri
al stabilization [10℄. Its value determined by

the expression

Πij = max
[

−
αcijhij

̺ij

(~vi − ~vj) · ~xij

|~xij |2 + εh2
ij

, 0
]

, (11)

where α is tuning parameter and ε is singularity pre-

venting 
oe�
ient. Variables cij , ̺ij , and hij de-

note mean values of the speed of sound, density, and

smoothing length respe
tively. Ve
tor ~xij = ~xi − ~xj .

The impa
t of the arti�
ial vis
osity should be su�-


ient to preserve numeri
al stability, but should not

indu
e vis
osity e�e
ts in the solution.

2.2. Boundary conditions

There are two types of boundaries in the dam break

problem: free surfa
e and wall. The free surfa
e is

tra
ked naturally by parti
le motion and no spe
ial

treatment is needed. Wall modelling, on the other

hand, is more 
ompli
ated in parti
le methods than in

mesh-based method. In this 
ase, a very simple wall

model was used. So-
alled virtual boundary parti
les

are pla
ed dire
tly on the wall and generate repulsive

for
e �eld a
ting on the �uid parti
les, whi
h prevents

them from penetrating the wall [2℄. The for
e �eld is

in the form of Lennard-Jones potential, thus

~fi = D
[( r0

|~xij |

)p1

−
( r0
|~xij |

)p2
] ~xij

|~xij |2
. (12)

This formula applies only if |~xij | ≤ r0, otherwise

~f = ~0.
The advantage of the des
ribed way of enfor
-

ing boundary 
onditions is its simpli
ity. On the

other hand, parti
les 
lose to a boundary are not sur-

rounded by neighbouring parti
les equally from all

sides; they su�er from so-
alled parti
le de�
ien
y.

Consequently, pressure values evaluated near walls

are in
orre
t.

2.3. Time integration

The dis
retized equations (9) and (10) are ordinary

di�erential equations with the respe
t to time. To

obtain the solution these equations have to be inte-

grated. In this work, the modi�ed leap-frog algorithm

was employed for this purpose [9℄. The algorithm 
an

be written

~v
n+ 1

2

i = ~v
n− 1

2

i +∆t
(d~vi
dt

)n

, (13)

ρ
n+ 1

2

i = ρ
n− 1

2

i +∆t
(dρi
dt

)n

, (14)

~x n+1
i = ~x n

i +∆t~v
n+ 1

2

i , (15)

~v n+1
i = ~v

n+ 1

2

i +
∆t

2

(d~vi
dt

)n

, (16)

ρn+1
i = ρ

n+ 1

2

i +
∆t

2

(dρi
dt

)n

, (17)

where indi
es in supers
ript denote time step. The

leap-frog algorithm is an expli
it integration method

and therefore it is 
onditionally stable. To determine

the size of the time step, it was used the Courant-

Friedri
hs-Lewy 
ondition. Its form suitable for SPH

stands

∆t ≤ 0.25min
i

hi

ci
. (18)

3. Numerical simulation

The dam break problem was simulated using the

des
ribed method. The Lagrangian nature of the

method enables to highlight some of the parti
les and

it is possible to keep tra
king them throughout the

simulation. In this 
ase, highlighted are the parti
les

whi
h rea
h above the original 
olumn height. This

parti
le 
hoi
e allows revealing some phenomena o
-


urring in the �ow.
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3.1. Initial setup

The initial setup of the problem is in Fig. 1. The liq-

uid 
olumn initial height η0 = 2 m and initial width

ξ0 = 1 m. It is lo
ated adja
ent to the left wall of the

tank. The tank is 4 m wide and both its walls are 3

m tall.

0 1 2 3 4
x (m)

0

0.5

1

1.5

2

2.5

3

y
 (

m
)

fluid particles
highlighted particles
boundary particles

Fig. 1. The dam break problem initial 
on�guration.

The liquid 
olumn is formed by 5000 parti
les of

equal mass. Gravity is zero in the beginning of the

simulation; the initial values of pressure and density

of all the parti
les are p0 and ̺0 respe
tively. Gravity
is gradually swit
hed on using the transition fun
tion

ζ = 0.5{sin[(−0.5 +
t

ttrans
)π] + 1}, (19)

where ttrans is a transient time period [11℄. Dur-

ing this period gravity gradually rises until it rea
hes

its full magnitude. The transient time period is very

small 
ompared to the whole pro
ess, thus it does not

a�e
t the solution.

3.2. Results and discussion

The whole dam break problem pro
ess 
an be divided

into three phases. In the initial phase, the surge front

propagates until it hits the verti
al wall. After that,

the se
ond phase begins. Its main feature is a pres-

en
e of a rolling wave and its intera
tions. In the last

phase, gravity waves move ba
k and forth in the tank

and liquid motion is gradually damped.

3.2.1. Surge front propagation phase

In the initial phase of the dam break, the liquid 
ol-

umn 
ollapsed and the surge front headed towards the

right wall (Fig. 2 and Fig. 3). In both these �gures,

a group of disrupted parti
les adja
ent to the left wall

is 
learly visible. Also, the group of highlighted par-

ti
les got 
loser to the surge front 
ompared to the

initial setup. The explanation for these phenomena

is the fa
t that the utilized wall boundary 
ondition

is not a true free-slip boundary 
ondition. The re-

pulsive for
e generated by the boundary parti
les is

not exa
tly normal to the boundary, but it also has a

tangent 
omponent.

0 1 2 3 4
x (m)

0

0.5

1

1.5

y
 (

m
)

fluid particles
highlighted particles
boundary particles

Fig. 2. The initial phase of the dam break; the surge

front moved towards the right wall. Time t = 0.3 s.

0 1 2 3 4
x (m)

0

0.5

1

1.5

y
 (

m
)

fluid particles
highlighted particles
boundary particles

Fig. 3. The initial phase of the dam break; just before

the surge front hit the right wall. Time t = 0.7 s.

0 0.5 1 1.5 2 2.5 3
T (1)

1

1.5

2

2.5

3

3.5

4

X
 (

1)

SPH simulation
Exp. (Martin 1952)
Exp. (Koshizuka 1996)
Exp. (Hu 2010)

Fig. 4. Dimensionless surge front position as a fun
tion

of dimensionless time; simulation and experiment 
om-

parison. Martin 1952 [7℄, Koshiuzuka 1996 [3℄, Hu 2010

[4℄.

The surge front position during the initial phase

was 
ompared with experimental data previously

published by some other authors (Fig. 4). The 
om-

parison has to be performed in dimensionless vari-

ables sin
e the experiments and the numeri
al simu-

lation were di�erent in their size. Only the 
olumn

height to width ratio is kept the same (2:1). The di-

mensionless surge front position and time are de�ned

as

X =
ξ

ξ0
, T = t

√

2g

ξ0
(20)
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where ξ is the surge front position and ξ0 is the initial
liquid 
olumn width.

Dis
repan
ies between the experimental data 
an

be explained by the di�erent experimental devi
es,

and measuring methods. The simulation and the ex-

periments seem to be in a good agreement. The im-

perfe
t free-slip boundary 
ondition des
ribed previ-

ously seems to have a little e�e
t on the �uid motion

globally. The surge front rea
hed the velo
ity 
orre-

sponding to the free fall velo
ity from the height of

the original liquid 
olumn (|~v| =
√

2|~g|η0).

3.2.2. Rolling wave phase

The rest of the simulation was 
ompared with exper-

imental and numeri
al data from a qualitative point

of view only. The same phenomena are to be found

in both experimental and numeri
al investigation in

[3℄ as in herein presented simulation. Parti
ular data

for 
omparison were 
hosen with regard to similarity

of both 
ases.

2.5 3 3.5 4
x (m)

0

0.5

1

1.5

2

2.5

3

y
 (

m
)

fluid particles
highlighted particles
boundary particles

Fig. 5. Detail of the verti
al jet formed along the right

wall after the surge front impa
ted the wall. Time t =

1.1 s.

As the surge front rea
hed the right wall, the

�uid de
elerated rapidly. That led to a signi�
ant

rise in pressure in the bottom right 
orner. This

high-pressure domain a�e
ted the surrounding �uid

whi
h was a

elerated again; in the verti
al dire
tion

mostly. Consequently, a verti
al jet was formed along

the right wall (Fig 5). The top of the jet rea
hes

the height about one and half times greater than the

original 
olumn height. Some parti
les even separate

from the main liquid body and rea
h the height of

more than twi
e the original 
olumn height

Then the top of the jet started losing its momen-

tum, while the bottom part was still moving upwards.

This led to a 
reation of the rolling wave (Fig. 6). It

moved ba
k towards the left wall, and its tip hit the

liquid surfa
e. The impa
ting liquid then rebounded

from the surfa
e, 
reating another liquid jet (Fig. 7).

This pro
ess 
reated 
losed po
kets of void spa
e.

However, all these empty po
kets vanished in a short

time.

2.5 3 3.5 4
x (m)

0

0.5

1

1.5

y
 (

m
)

fluid particles
highlighted particles
boundary particles

Fig. 6. Detail of the rolling wave before the impa
t on

the surfa
e. Time t = 1.85 s.

2 2.5 3 3.5
x (m)

0

0.5

1

1.5

y
 (

m
)

fluid particles
highlighted particles
boundary particles

Fig. 7. Detail of the rolling wave after the impa
t on the

surfa
e. Void po
kets are 
learly visible. Time t = 2.15 s.

3.2.3. Gravity wave phase

When the wave impa
ted the left wall, a verti
al jet

along the wall emerged again, but this time having

signi�
antly less momentum (Fig. 8). This amount

of momentum was not enough to 
reate a rolling wave.

Instead of that, a surfa
e gravity wave emerged (Fig.

9). This wave re�e
ted from the walls and the �uid

motion was gradually damped.
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Fig. 8. The impa
t on the left wall. Created jet is mu
h

smaller then previously. Time t = 3.3 s.
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Fig. 9. The surfa
e gravity wave moving towards the

right wall. Time t = 4.5 s.

4. Conclusion and future work

In this work, a dam break problem was solved using

SPH method, whi
h is a mesh-free parti
le method.

The method itself is brie�y introdu
ed and some used

algorithms are des
ribed in detail. The initial phase

of the problem was 
ompared with experimental data

available in the literature. The numeri
al results are

in a good quantitative agreement with these data.

The later phases of the simulation were also 
om-

pared with the experiments and numeri
al results of

other authors. Only the qualitative 
omparison 
ould

be done and the agreement is good again. The phe-

nomena o

urring throughout the simulation are de-

s
ribed in detail. For this purpose, the Lagrangian

nature of the method was exploited; 
ertain parti
les

were tra
ked throughout the simulation.

The 
urrent implementation of the SPH method

proved itself to be 
apable of free surfa
e �ow sim-

ulations. Free surfa
es are tra
ked naturally by the

parti
le motion. The solution overall is in good agree-

ment with the numeri
al and experimental data of

other authors, despite a very simple method of en-

for
ing wall boundary 
ondition. To further improve

the results, a more sophisti
ated method should be

implemented. Relatively simple and robust methods

are, e.g. [11, 12℄. Both these methods deal with a

parti
le de�
ien
y, whi
h is 
ru
ial for evaluation of

variables 
lose to a wall. The employed weakly 
om-

pressible approa
h of modelling in
ompressible �ow

also leads to strong os
illations in the pressure �eld.

Kinemati
s of the �ow seems not to be a�e
ted by

these os
illations. To redu
e them, a di�usive term


an be introdu
ed into 
ontinuity equation [13℄.
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Nomenclature

Subs
ript indi
es i and j denote parti
les, index 0 la-

bels referen
e value. Supers
ript index denotes time

step.

a arbitrary fun
tion (1)
c speed of sound (m · s−1)
D boundary repulsive for
e 
oe�
ient (m2 · s−2)
d number of spatial dimensions (1)
dV ′

in�nitesimal volume (m3)
~f external for
e �eld ve
tor (m · s−2)
~g gravity for
e �eld ve
tor (m · s−2)
h smoothing length (m)
m mass (kg)
p pressure (Pa)
R dimensionless distan
e (1)
T dimensionless time (1)
t time (s)
~v velo
ity ve
tor (m · s−1)
W smoothing fun
tion (m−d)
X dimensionless surge front position (1)
~x position ve
tor (m)

α arti�
ial vis
osity 
oe�
ient (1)
γ equation of state exponent (1)
∆t time step (s)
δ Dira
 delta fun
tion (m−d)
ε singularity preventing 
oe�
ient (1)
ζ transition fun
tion (1)
ξ surge front position (m)
Π arti�
ial vis
osity term (kg−1 ·m5 · s−2)
̺ density (kg ·m−3)
η 
olumn height (m)
Ω domain in d-dimensional spa
e (md)
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