Simulation of a 2D dam collapse problem using SPH method
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Abstract

In this paper, a numerical simulation of a dam break problem is presented. For this simulation, smoothed particle
hydrodynamics (SPH) method was employed. SPH is a relatively non-conventional method, which can be used in CFD.
Unlike traditional CFD methods, it uses a Lagrangian framework and it does not utilize computational mesh for a
spatial discretization. Its Lagrangian nature allows to track particular fluid particles throughout a simulation easily;
this tracking can help to describe some phenomena occurring in a problem. The dam break problem is described in
detail and the simulation is compared with the experimental data which are available in the literature. In the end, the
results are discussed and some improvements to the program to obtain better results are proposed.
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1. Introduction

A dam break is a relatively simple problem when in
the beginning; initial and boundary conditions are
easy to define. But when the liquid column begins to
collapse situation is not so simple anymore. The free
surfaces emerge and vanish throughout the process,
and the flow is determined by inertia forces, which
dominate over viscous and surface forces. It allows to
use a simple inviscid fluid model and still get results
which are not far from the reality if the free surface
can be tracked appropriately. The mentioned features
of the flow are the main reason why the dam break
problem is used for testing of CFD programs which
are intended to be used for free surface flow simu-
lations. The problem is naturally three-dimensional
but simulations are often simplified in two dimen-
sions. It is much less computationally expensive and
comparison with experimental data is still possible.

The dam break problem was used for validation
of VOF (volume of fluid) method interface tracking
algorithm for FVM (finite volume method) [1], SPH
(smoothed particle hydrodynamics) [2], MPS (mov-
ing particle semi-implicit) [3, 4], and FEM (finite el-
ement method) [5]. The last three mentioned works
combine both numerical and experimental investiga-
tion of the problem. The problem also served for
comparison between various methods [6].

The fundamental experimental work on the dam
break problem was published almost seventy years
ago and it focused mainly on the kinematics of the
flow [7]. Recently, an experimental work dealing with
the dynamics of the flow was published [8]. These
works provide data which are suitable for comparison
with numerical results.

In this work, a dam break problem is investigated
using SPH method. Unlike FVM, the most exten-
sively used method in CFD, which uses the Eulerian
reference frame, SPH is based on the Lagrangian de-
scription of the flow. Fluid is represented in the form
of particles with constant mass and a mesh is not
employed for spatial discretization. Therefore, it is
referred to be one of the so-called mesh-free parti-
cle methods. The Lagrangian nature of the method
was exploited to describe the phenomena occurring
throughout the process.
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2. Method

The idea of the SPH method originates from an inte-
gral identity

a(@) = /Qa(f/m(:& — &) dv’, (1)

where a is an arbitrary function defined in a three-
dimensional domain Q and ¢ is the Dirac delta func-
tion. Vector Z denotes coordinates of the specific

point in € and ' is the variable of integration. This
identity can be approximated in continuous form by
replacing the Dirac delta function with smoothing

function W(x' — Z, h), where h is smoothing length.
It determines the size of the influence domain of the
smoothing function. The next step is to substitute in-
tegration by summation over the particles, where in-
finitesimal volume dV” is replaced by particle volume
expressed as m;/g;. Thus the discrete approximation
of the function is
s
a() =y a(@;)W (@) — &, h)g—]- (2)
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Indices i and j serve for particle identification. Using

relatively simple procedures, a discrete approxima-

tion of a function spatial derivative is obtained in the
form

.y
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J
Note that the indices in the argument of the smooth-
ing function W are swapped. This formulation al-
lows transforming any partial differential equations
into ordinary differential equations. For convenience,
smoothing function gradient is usually written in the
shortened form

In this work, truncated Gaussian smoothing func-
tion was used. It is usually written in the form

fR<3
0 fR>3" (5)

rth—de R’
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where R = |#; — Z;|/h and d is number of spatial di-
mensions. Smoothing length & is set the same as the
initial particle spacing.

2.1. Governing equations

The continuity and the momentum equations in the
Lagrangian description are

Do N
T (©)
Dv 1 -

The fluid is considered to be compressible and invis-
cid.

The system of equations needs to be closed by
the equation of state. For weakly compressible SPH
simulations, a popular choice is the Tait equation of
state. It can be written in the form

_ o [(p)7
p= QLY
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where pg is density at pressure pg, c is speed of
sound. Parameter gamma = 7 ensures that even
small change in density leads to great variation in
pressure. The Tait equation does not consider depen-
dence on temperature. Since the changes in temper-
ature are very small in the process, this non-physical
assumption is justifiable. This barotropic fluid model
also leads to the fact that the energetic equation is
independent and it does not have to be solved. In-
stead of the physical speed of sound, it is taken a
numerical value which should be set approximately
ten times higher than expected maximal flow veloc-
ity in the solved problem [2]. That keeps variation
in liquid density sufficiently low and the flow can be
regarded as incompressible.

Using techniques which originate from the spatial
derivative approximation (3) the governing equations
(6) and (7) are obtained in the discrete form:

+ po, (8)

Do; m; .,
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The symmetry with respect to the indices ¢ and j re-
duces errors related to the particle discretization [9].
The term II;; is artificial viscosity and it serves for
numerical stabilization [10]. Its value determined by
the expression

Hij)vwij + fi, (10)

Z
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Qij |:Ez] | + Eh
where « is tuning parameter and ¢ is singularity pre-
venting coefficient. Variables c¢;;, 0;5, and h;; de-
note mean values of the speed of sound, den51ty, and
smoothing length respectively. Vector &;; = &; —
The impact of the artificial viscosity should be suﬂ%
cient to preserve numerical stability, but should not
induce viscosity effects in the solution.

2.2. Boundary conditions

There are two types of boundaries in the dam break
problem: free surface and wall. The free surface is
tracked naturally by particle motion and no special
treatment is needed. Wall modelling, on the other
hand, is more complicated in particle methods than in
mesh-based method. In this case, a very simple wall
model was used. So-called virtual boundary particles
are placed directly on the wall and generate repulsive
force field acting on the fluid particles, which prevents
them from penetrating the wall [2]. The force field is
in the form of Lennard-Jones potential, thus

Fo() - () )2 o
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This formula applies only if |Z;;| <
f=0.

The advantage of the described way of enforc-
ing boundary conditions is its simplicity. On the
other hand, particles close to a boundary are not sur-
rounded by neighbouring particles equally from all
sides; they suffer from so-called particle deficiency.
Consequently, pressure values evaluated near walls
are incorrect.

ro, otherwise

2.3. Time integration

The discretized equations (9) and (10) are ordinary
differential equations with the respect to time. To
obtain the solution these equations have to be inte-
grated. In this work, the modified leap-frog algorithm
was employed for this purpose [9]. The algorithm can
be written

AR ﬁi"*%+m(c£")n, (13)
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where indices in superscript denote time step. The
leap-frog algorithm is an explicit integration method
and therefore it is conditionally stable. To determine
the size of the time step, it was used the Courant-
Friedrichs-Lewy condition. Its form suitable for SPH
stands

At <0.25 m_in@. (18)

Ci

3. Numerical simulation

The dam break problem was simulated using the
described method. The Lagrangian nature of the
method enables to highlight some of the particles and
it is possible to keep tracking them throughout the
simulation. In this case, highlighted are the particles
which reach above the original column height. This
particle choice allows revealing some phenomena oc-
curring in the flow.
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3.1. Initial setup

The initial setup of the problem is in Fig. 1. The lig-
uid column initial height 7y = 2 m and initial width
& = 1 m. It is located adjacent to the left wall of the
tank. The tank is 4 m wide and both its walls are 3
m tall.
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25¢ - highlighted particles .
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Fig. 1. The dam break problem initial configuration.

The liquid column is formed by 5000 particles of
equal mass. Gravity is zero in the beginning of the
simulation; the initial values of pressure and density
of all the particles are pg and gg respectively. Gravity
is gradually switched on using the transition function

t

¢ = 0.5{sin[(—0.5 + yml+1},  (19)

ttrans

where ty.qns 18 a transient time period [11]. Dur-
ing this period gravity gradually rises until it reaches
its full magnitude. The transient time period is very
small compared to the whole process, thus it does not
affect the solution.

3.2. Results and discussion

The whole dam break problem process can be divided
into three phases. In the initial phase, the surge front
propagates until it hits the vertical wall. After that,
the second phase begins. Its main feature is a pres-
ence of a rolling wave and its interactions. In the last
phase, gravity waves move back and forth in the tank
and liquid motion is gradually damped.

3.2.1. Surge front propagation phase

In the initial phase of the dam break, the liquid col-
umn collapsed and the surge front headed towards the
right wall (Fig. 2 and Fig. 3). In both these figures,
a group of disrupted particles adjacent to the left wall
is clearly visible. Also, the group of highlighted par-
ticles got closer to the surge front compared to the
initial setup. The explanation for these phenomena
is the fact that the utilized wall boundary condition
is not a true free-slip boundary condition. The re-
pulsive force generated by the boundary particles is
not exactly normal to the boundary, but it also has a
tangent component.

fluid particles _
highlighted particles
boundary particles

y (m)

Fig. 2. The initial phase of the dam break; the surge
front moved towards the right wall. Time t = 0.3 s.

fluid particles

1 highlighted particles | |
E boundary particles
=05 .
o 4
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Fig. 3. The initial phase of the dam break; just before
the surge front hit the right wall. Time t = 0.7 s.
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Fig. 4. Dimensionless surge front position as a function
of dimensionless time; simulation and experiment com-
parison. Martin 1952 [7], Koshiuzuka 1996 [3], Hu 2010

[4]-

The surge front position during the initial phase
was compared with experimental data previously
published by some other authors (Fig. 4). The com-
parison has to be performed in dimensionless vari-
ables since the experiments and the numerical simu-
lation were different in their size. Only the column
height to width ratio is kept the same (2:1). The di-
mensionless surge front position and time are defined

as
2
& Tt/

e )

(20)
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where £ is the surge front position and & is the initial
liquid column width.

Discrepancies between the experimental data can
be explained by the different experimental devices,
and measuring methods. The simulation and the ex-
periments seem to be in a good agreement. The im-
perfect free-slip boundary condition described previ-
ously seems to have a little effect on the fluid motion
globally. The surge front reached the velocity corre-
sponding to the free fall velocity from the height of

the original liquid column (7] = /2|g|no)-

3.2.2. Rolling wave phase

The rest of the simulation was compared with exper-
imental and numerical data from a qualitative point
of view only. The same phenomena are to be found
in both experimental and numerical investigation in
[3] as in herein presented simulation. Particular data
for comparison were chosen with regard to similarity
of both cases.
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Fig. 5. Detail of the vertical jet formed along the right
wall after the surge front impacted the wall. Time t =
1.1s.

As the surge front reached the right wall, the
fluid decelerated rapidly. That led to a significant
rise in pressure in the bottom right corner. This
high-pressure domain affected the surrounding fluid
which was accelerated again; in the vertical direction
mostly. Consequently, a vertical jet was formed along
the right wall (Fig 5). The top of the jet reaches
the height about one and half times greater than the
original column height. Some particles even separate

from the main liquid body and reach the height of
more than twice the original column height

Then the top of the jet started losing its momen-
tum, while the bottom part was still moving upwards.
This led to a creation of the rolling wave (Fig. 6). It
moved back towards the left wall, and its tip hit the
liquid surface. The impacting liquid then rebounded
from the surface, creating another liquid jet (Fig. 7).
This process created closed pockets of void space.
However, all these empty pockets vanished in a short
time.

15Ff A -

*  fluid particles :
* highlighted particles
boundary particles

l 4
E
>
05 1
o - |
25 3 35 4
x (m)

Fig. 6. Detail of the rolling wave before the impact on
the surface. Time t = 1.85 s.
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Fig. 7. Detail of the rolling wave after the impact on the
surface. Void pockets are clearly visible. Time t = 2.15 s.

3.2.3. Gravity wave phase

When the wave impacted the left wall, a vertical jet
along the wall emerged again, but this time having
significantly less momentum (Fig. 8). This amount
of momentum was not enough to create a rolling wave.
Instead of that, a surface gravity wave emerged (Fig.
9). This wave reflected from the walls and the fluid
motion was gradually damped.
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Fig. 8. The impact on the left wall. Created jet is much
smaller then previously. Time t = 3.3 s.
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Fig. 9. The surface gravity wave moving towards the
right wall. Time t = 4.5 s.

4. Conclusion and future work

In this work, a dam break problem was solved using
SPH method, which is a mesh-free particle method.
The method itself is briefly introduced and some used
algorithms are described in detail. The initial phase
of the problem was compared with experimental data
available in the literature. The numerical results are
in a good quantitative agreement with these data.
The later phases of the simulation were also com-
pared with the experiments and numerical results of
other authors. Only the qualitative comparison could
be done and the agreement is good again. The phe-
nomena occurring throughout the simulation are de-
scribed in detail. For this purpose, the Lagrangian
nature of the method was exploited; certain particles
were tracked throughout the simulation.

The current implementation of the SPH method
proved itself to be capable of free surface flow sim-
ulations. Free surfaces are tracked naturally by the
particle motion. The solution overall is in good agree-
ment with the numerical and experimental data of
other authors, despite a very simple method of en-
forcing wall boundary condition. To further improve
the results, a more sophisticated method should be
implemented. Relatively simple and robust methods
are, e.g. [11, 12]. Both these methods deal with a
particle deficiency, which is crucial for evaluation of
variables close to a wall. The employed weakly com-
pressible approach of modelling incompressible flow
also leads to strong oscillations in the pressure field.
Kinematics of the flow seems not to be affected by
these oscillations. To reduce them, a diffusive term
can be introduced into continuity equation [13].
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Nomenclature

Subscript indices ¢ and j denote particles, index 0 la-
bels reference value. Superscript index denotes time
step.

arbitrary function (1)

speed of sound (m-s™1!)

boundary repulsive force coefficient (m? -s=2)
number of spatial dimensions (1)
infinitesimal volume (m?)

external force field vector (m-s~2)
gravity force field vector (m -s~2
smoothing length (m)

mass (kg)

pressure (Pa)

dimensionless distance (1)
dimensionless time (1)

time (s)

velocity vector (m-s™!)
smoothing function (m~9)
dimensionless surge front position (1)
position vector (m)

~
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artificial viscosity coefficient (1)
equation of state exponent (1)

time step (s)

Dirac delta function (m~9)

singularity preventing coefficient (1)
transition function (1)

surge front position (m)

artificial viscosity term (kg=!-m® -s72)
density (kg -m™3)

column height (m)

domain in d-dimensional space (m?)
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