
Padasip - open source library for adaptive signal processing
in language Python

Matouš Cejnek∗

CTU in Prague, FME, Department of Instrumentation and Control Engineering, Technická 4, 166 07 Prague 6, Czech Rebpublic

Abstract
The Padasip library is designed to simplify adaptive signal processing tasks within python (filtering, prediction, detec-
tion, reconstruction, classification). Also in this library is presented some new methods for adaptive signal processing.
The library is designed to be used with datasets and also with real-time measuring (sample-after-sample feeding). The
library is open source project distributed under MIT license. For code optimisation, this library uses Numpy for array
operations.

Key-words: adaptive signal processing; adaptive filtering; detection; neural networks

1. Introduction
In the last few years, Python became benchmark lan-
guage for various fields of research and computations.
This is true especially in field of neural networks and
deep-learning. Strong reason for this is fact, that
companies like Google has interest in Python, Linux
and Open Source technologies in general. This phe-
nomena is probably caused by multiple reasons and
according to current trends in industry and cybernet-
ics (Industry 4.0, big data).

As was mentioned before, multiple great Python
libraries exists for tasks related to deep learning (for
example [1]). It is hard to find competition for
Python in this field. However, in some parts of the
machine learning field the other languages (for exam-
ple R [2] and Matlab [3]) still has greater foundation.
Especially the Python tools for classical adaptive sig-
nal processing are underdeveloped in comparison with
other Python libraries. This fact is the key motiva-
tion behind creation of Padasip library.

1.1. Development

The development of the library started in the May of
2016 with primary focus on adaptive filtering. Fu-
ture releases extend the library with more signal
pre-processing functions and neural networks mod-
ule. The last release 1.0.0 adds detection module into
Padasip and remove some back compatibility with
older version.

The integrity of the library is checked during ev-
ery season with automated tests (on start and on end
of the season). For the purpose of testing is used
standard library unittest. Currently 18 tests are used
to check the integrity of Padasip.

1.2. Installation and Integration

The simplest way of Padasip installation is with pip
from terminal as follows

sudo pip install padasip

Other way is to download or clone from Padasip of-
ficial github pages [4], manually or with git. Down-

loaded library can be placed in Python packages, or
directly into target project (to avoid dependency).
Padasip has only one dependency - Numpy [5]. In
order to work with Padasip it is necessary to have
Numpy installed.

The library can be imported as any other Python
module. All examples in this paper utilises the fol-
lowing import

import padasip as pa

Documentation for all functions and features is at [6].

2. Current content of the library

2.1. Data preprocessing module

In this module are placed functions related to prepro-
cessing of data.

2.1.1. Input matrix construction

This function creates input matrix from historical val-
ues. Example follows:

>>> a
array ([1, 2, 3, 4, 5, 6])
>>> pa.input_from_history(a,3)
array ([[1, 2, 3],

[2, 3, 4],
[3, 4, 5],
[4, 5, 6]])

2.1.2. Linear discriminant analysis

Linear discriminant analysis (LDA) [7] is a method
used to determine the features that separates some
classes of items. The output of LDA may be used as
a linear classifier, or for dimensionality reduction for
purposes of classification. Code example follows:

new_x = pa.preprocess.LDA(x, labels , n)

∗Kontakt na autora: matous.cejnek@fs.cvut.cz

Studentská tvůrčí činnost 2017 | České vysoké učení technické v Praze | Fakulta strojní

2.1.3. Principal component analysis

Principal component analysis (PCA) is a statistical
method how to convert a set of observations with pos-
sibly correlated variables into a data-set of linearly
uncorrelated variables (principal components). The
number of principal components is less or equal than
the number of original variables. This transformation
is defined in such a way that the first principal com-
ponent has the largest possible variance. Example
follows:

new_x = pa.preprocess.PCA(x, n)

2.1.4. Data standardization

This function standardizes (z-score) the series accord-
ing to equation

xs =
x− a
b

(1)

where x is time series to standardize, a is offset to
remove and b scale to remove. Example follows:

xs = pa.standardize(x)

The inverse operation can be done as follows:

x = pa.standardize(xs, offset=a, scale=b)

2.2. Adaptive filtering module

In this module are stored classes functions related to
adaptive filters. Example of NLMS filter usage fol-
lows:

f = pa.filters.AdaptiveFilter(model="NLMS", n
=4, mu=0.1, w="random")

y, e, w = f.run(d, x)

All adaptive filters can be also used online - sample
by sample feeding. For this purpose are implemented
two functions:

f.adapt(d, x)
f.predict(x)

The adapt function adapts weighs of the filter accord-
ing given target and regression vector. The function
predict predict (or filter) new value from given regres-
sion vector.

2.2.1. The least-mean-squares

The least-mean-squares (LMS) adaptive filter [8] is
the most popular adaptive filter.

The LMS adaptive filter could be described as

y(k) = w1 · x1(k) + ...+ wn · xn(k), (2)

or in a vector form

y(k) = xT (k)w(k), (3)

where k is discrete time index, (.)T denotes the trans-
position, y(k) is filtered signal, w is vector of filter
adaptive parameters and x is input vector (for a fil-
ter of size n) as follows

x(k) = [x1(k), ..., xn(k)]. (4)

The LMS weights adaptation could be described
as follows

w(k + 1) = w(k) + ∆w(k), (5)

where ∆w(k) is

∆w(k) =
1

2
µ
∂e2(k)

∂w(k)
= µ · e(k) · textbfx(k), (6)

where µ is the learning rate (step size) and e(k) is
error defined as

e(k) = d(k)− y(k). (7)

2.2.2. The normalized least-mean-squares

The normalized least-mean-squares (NLMS) adaptive
filter [8] is an extension of the popular LMS adap-
tive filter. The extension is based on normalization
of learning rate. The learning rage µ is replaced by
learning rate η(k) normalized with every new sample
according to input power as follows

η(k) =
µ

ε+ ||x(k)||2
, (8)

where ||x(k)||2 is norm of input vector and ε is a small
positive constant (regularisation term). This con-
stant is introduced to preserve the stability in cases
where the input is close to zero.

2.2.3. The recursive least squares

The update of Recursive Least Squares filter [9] may
be described as

w(k + 1) = w(k) + ∆w(k), (9)

where ∆w(k) is obtained as follows

∆w(k) = R(k)x(k)e(k), (10)

where e(k) is error and it is estimated according to
filter output and desired value d(k) as follows

e(k) = d(k)− y(k). (11)

The R(k) is inverse of auto-correlation matrix and it
is calculated as follows

R(k) =
1

µ
(R(k− 1)− R(k − 1)x(k)x(k)TR(k − 1)

µ+ x(k)TR(k − 1)x(k)
).

(12)
The initial value of auto-correlation matrix should be
set to

R(0) =
1

δ
I, (13)

where I is identity matrix and δ is small positive con-
stant.

2.2.4. The generalized normalized gradient descent

The generalized normalized gradient descent
(GNGD) adaptive filter [10] is an extension of the
NLMS adaptive filter.

Studentská tvůrčí činnost 2017 | České vysoké učení technické v Praze | Fakulta strojní

2.2.5. The affine projection

The Affine Projection (AP) algorithm is implemented
according to the paper [11]. Usage of this filter should
be benefical especially when input data is highly cor-
related. This filter is based on LMS. The difference is,
that AP uses multiple input vectors in every sample.
The number of vectors is called projection order. In
this implementation the historic input vectors from
input matrix are used as the additional input vectors
in every sample.

The input for AP filter is created as follows

XAP (k) = (x(k), ...,x(k − L)), (14)

where XAP is filter input, L is projection order, k
is discrete time index and xk is input vector. The
output of filter is calculated as follows:

yAP (k) = XT
AP (k)w(k), (15)

where x(k) is the vector of filter adaptive parameters.
The vector of targets is constructed as follows

dAP (k) = (d(k), ..., d(k − L))T , (16)

where d(k) is target in time k. The error of the filter
is estimated as follows

eAP (k) = dAP (k)− yAP (k). (17)

And the adaptation of adaptive parameters is calcu-
lated according to equation

wAP (k + 1) = wAP (k + 1)+

µXAP (k)(XT
AP (k)XAP (k) + εI)−1eAP (k). (18)

During the filtering we are interested just in output
of filter y(k) and the error e(k). These two values are
the first elements in vectors: yAP (k) for output and
eAP (k) for error.

2.3. Neural networks module

In this module is currently implemented only one neu-
ral network. This model is curently not a priority,
because there are plenty of good Python modules fea-
turing neural networks.

2.3.1. Multi-layer perceptron

The Multi-layer perceptron (MLP) is probably the
most popular neural network in machine learning
field. In this field is commonly used only with few
layers (unlike in field of Deep learning). The Padasip
MPL implementation is done according practical rec-
ommendation [12]. The rule for the learning rate se-
lection (if not defined by user) of neuron j in layer i
is as follows

µij = m−0.5, (19)
where m is number of nodes on input of current node.

2.4. Detection module

This module features two methods - Learning En-
tropy (LE) and Error and Learning Based Nov-
elty Detection (ELBND). Both implemented methods
can be used together with any adaptive filter from
Padasip. Description of methods follows.

2.4.1. Error and Learning Based Novelty Detection

The ELBND [13] can describe every sample with vec-
tor of values estimated from the adaptive increments
and the model error as follows

ELBND(k) = ∆w(k)e(k). (20)

The output is a vector of values describing novelty
in given sample. Padasip features two methods how
to turn this vector into more convenient single value
- maximum of absolute values and sum of absolute
values.

It is important to highlight, that this method does
not need any additional parameters, so there is no is-
sues related to method tuning.

2.4.2. Learning Entropy

The LE [14] is window based function. Value for ev-
ery sample is defined as follows

LE(k) =
1

n · nα

∑
f(∆wi(k), α), (21)

where the n is number of the adaptive weights, the
nα is number of used detection sensitivities

α = [α1, α2, . . . , αnα
]. (22)

The function f(∆wi,j) is defined as follows

∆wi(k), α) =

{if
(
|∆wi(k)| ;α|∆wMi(k)|

)
then 1, else 0}, (23)

where |∆wMi(k)| is the mean value of the window
used for the LE evaluation.

The optimal number of detection sensitivities and
their values depends on task and data. The sensi-
tivities should be chosen in range where the function
LE(k) returns a value lower than 1 for at least one
sample in the data, and for at maximally one sample
returns value of 0.

2.5. Miscellaneous functions module

In this module are implemented functions that does
not belong to any other category. Currently this mod-
ule features only functions for error evaluation. These
error functions are often used for evaluation of an er-
ror rather than just the error itself or its mean value.
All functions are done in the way, that user can pass
just the vector of errors directly, or two vectors - true
conditions and predicted conditions.

2.5.1. Mean absolute error

mean absolute error (MAE) is also known as MAD -
mean absolute deviation. This metric is obtained as
follows

MAE =
1

n

n∑
i=1

(ei). (24)

Example code follows:

mse = pa.misc.MAE(x1 , x2)

Studentská tvůrčí činnost 2017 | České vysoké učení technické v Praze | Fakulta strojní

2.5.2. Mean squared error

Mean squared error (MSE) is also known as MSD.
Relation of this error metric to data follows

MSE =
1

n

n∑
i=1

(ei)
2. (25)

2.5.3. Root-mean-square error

Root-mean-square error (RMSE) is also known as
RMSD. The formula follows

RMSE =
√
MSE. (26)

2.5.4. Logarithmic squared error

Logarithmic squared error returns a vector of squared
error values in dB as follows

logSE = 10 log10(e2). (27)

3. Conclusion and discussion
3.1. Availability

More information about usage and implementations
can be found at Padasip documentation webpage [6].
The software is released under MIT license. No com-
mercial software is required to run Padasip. More
examples and tutorials can be found at [15].

3.2. Performance

Padasip does not define any new data structure, but
instead uses only standard Python and NumPy [5]
data structures. In most of the functions it was pos-
sible to done almost all exhaustive operations with
Numpy array operations, which uses underlying func-
tions written in C/C++/Fortran.

3.3. Future Development

The main goal for next versions is extension of detec-
tion module with new functions (not necessarily adap-
tive functions, but not well implemented for Python
in general). Next plan is extension of neural networks
module with Radial basis network and Self organising
maps.

Acknowledgement
This work was supported by student grant
SGS17/070/OHK2/1T/12.

Nomenclature

ELBND Error and learning based novelty detec-
tion (−)

LDA Linear discriminant analysis (−)
LE Learning Entropy (−)
LMS Least mean squares (−)

MLP Multilayer perceptron (−)
MAE Mean absolute error (−)
MSE Mean square error (−)
NLMS Normalised least mean squares (−)
PDA Principal component analysis (−)
SNR Signal to noise ratio (−)

α vector of LE sensitivities (−)
µ learning rate (−)
ε regularisation term (−)

References

[1] James Bergstra et al. “Theano: Deep learning on
gpus with python”. In: NIPS 2011, BigLearning
Workshop, Granada, Spain. Vol. 3. Citeseer. 2011.

[2] R Core Team. “R language definition”. In: Vi-
enna, Austria: R foundation for statistical comput-
ing (2000).

[3] User’s Guide Matlab. “The mathworks”. In: Inc.,
Natick, MA (1992).

[4] Padasip 1.0.0 documentation. Github Inc. Available
at: https://github.com/ (visited on 03/22/2017).

[5] Stéfan van der Walt, S Chris Colbert, and Gael
Varoquaux. “The NumPy array: a structure for ef-
ficient numerical computation”. In: Computing in
Science & Engineering 13.2 (2011), pp. 22–30.

[6] Matouš Cejnek. Padasip 1.0.0 documentation. AS-
PICC. Available at: http://matousc89.github.io/
padasip/ (visited on 03/22/2017).

[7] Ronald A Fisher. “The use of multiple measure-
ments in taxonomic problems”. In: Annals of eu-
genics 7.2 (1936), pp. 179–188.

[8] Ali H Sayed. Fundamentals of adaptive filtering.
John Wiley & Sons, 2003.

[9] Ali H Sayed and Thomas Kailath. “Recursive least-
squares adaptive filters”. In: The Digital Signal Pro-
cessing Handbook (1998), pp. 21–1.

[10] Danilo P Mandic. “A generalized normalized gradi-
ent descent algorithm”. In: IEEE Signal Processing
Letters 11.2 (2004), pp. 115–118.

[11] Alberto Gonzalez et al. “Affine projection algo-
rithms: Evolution to smart and fast algorithms
and applications”. In: Signal Processing Conference
(EUSIPCO), 2012 Proceedings of the 20th Euro-
pean. IEEE. 2012, pp. 1965–1969.

[12] Yann A LeCun et al. “Efficient backprop”. In: Neu-
ral networks: Tricks of the trade. Springer, 2012,
pp. 9–48.

[13] Matouš Cejnek, Peter Mark Benes, and Ivo
Bukovsky. “Another Adaptive Approach to Novelty
Detection in Time Series”. In: Academy & Indus-
try Research Collaboration Center (AIRCC) (2014),
pp. 341–351.

[14] Ivo Bukovsky. “Learning entropy: Multiscale mea-
sure for incremental learning”. In: Entropy 15.10
(2013), pp. 4159–4187.

[15] Matouš Cejnek. Python Adaptive Signal Process-
ing Handbook. ASPICC. Available at: https : / /
github.com/matousc89/Python-Adaptive-Signal-
Processing-Handbook (visited on 03/22/2017).

https://github.com/
http://matousc89.github.io/padasip/
http://matousc89.github.io/padasip/
https://github.com/matousc89/Python-Adaptive-Signal-Processing-Handbook
https://github.com/matousc89/Python-Adaptive-Signal-Processing-Handbook
https://github.com/matousc89/Python-Adaptive-Signal-Processing-Handbook

	Introduction
	Development
	Installation and Integration

	Current content of the library
	Data preprocessing module
	Input matrix construction
	Linear discriminant analysis
	Principal component analysis
	Data standardization

	Adaptive filtering module
	The least-mean-squares
	The normalized least-mean-squares
	The recursive least squares
	The generalized normalized gradient descent
	The affine projection

	Neural networks module
	Multi-layer perceptron

	Detection module
	Error and Learning Based Novelty Detection
	Learning Entropy

	Miscellaneous functions module
	Mean absolute error
	Mean squared error
	Root-mean-square error
	Logarithmic squared error

	Conclusion and discussion
	Availability
	Performance
	Future Development

