Experimentální ověření tvarovačů signálů pro tlumení vibrací

David Osta

ČVUT v Praze, Fakulta strojní, Ústav přístrojové a řídící techniky, Technická 4, 166 07 Praha 6, Česká republika

Abstrakt

Práce se zabývá experimentálním ověřením metody tvarování signálů pro tlumení vibrací flexibilních systémů na laboratorní soustavě vozíků s kyvadlem. Je zde představena metoda tvarování signálů pro tlumení oscilací flexibilních systémů, která je následně experimentálně ověřená pro tradiční zapojení tvarovače signálů s distribuovaným zpožděním v přímé větvi regulačního obvodu a pro netradiční architekturu s inverzním tvarovačem s distribuovaným zpožděním zapojeným ve zpětné vazbě. Dále je zde popsán matematický model soustavy, identifikace parametrů systému, návrh kompenzace nelinearit laboratorní soustavy a návrh řízení s tvarovačem signálu. Na závěr jsou experimentální a simulační výsledky porovnány.

Klíčová slova:Tvarování signálů; identifikace; kompenzace tření; ZV_eD tvarovač; tlumení vibrací; automatické řízení; mechanická soustava vozík kyvadlo

Uvod do tlumení vibrací pomocí tvarování signálů

Metoda tvarování signálů (Signal Shaping) je využívaná pro tlumení vibrací flexibilních částí mechanických systémů [1]. Tvarovač signálů je většinou použit jako filtr referenčního signálu, viz Obr. 1, kde G(s)je systém řízený regulátorem C(s) a referenční signál w je upraven tvarovačem S(s) takovým způsobem aby neobsahoval budící frekvence flexibilního systému F(s). Tvarovače signálů jsou velmi podobné filtrům s konečnou impulzní odezvou (FIR) s tím rozdílem že hlavním účelem tvarovačů je minimalizace vibrací systémů a narozdíl od FIR filtrů nekladou požadavek na propouštění dalších frekvencí bez výrazného útlumu [2]. Díky absenci tohoto požadavku je jejich návrh výrazně snadnější a odezva rychlejší [1, 2].

1.1. Návrh tvarovačů signálů

Tvarovače jsou navrhovány tak aby kompenzovali oscilační módy systému, , které jsou definovány jako komplexně sdružené póly:

$$r_{1,2} = -\beta \pm j\Omega,\tag{1}$$

$$\beta = \omega_0 \zeta, \tag{2}$$

$$\Omega = \omega_0 \sqrt{1 - \zeta^2},\tag{3}$$

kde ζ je poměrný útlum a ω_0 vlastní frekvence kompenzovaného módu. Efektivnost tvarovače závisí na co nejpřesnějším určení těchto dvou parametrů. Obecná forma tvarovače je podobně jako u FIR filtru konvoluční suma viz. následující rovnice [3]:

$$v(t) = A_0 w(t) + \sum_{k=1}^{n} A_k w(t - \tau_k), \qquad (4)$$

$$S(s) = A_0 + \sum_{k=1}^{n} A_k e^{-s\tau_k},$$
(5)

*Kontakt na autora: David.Osta@fs.cvut.cz

kde w a v jsou vstup a výstup tvarovače a parametry tvarovače jsou zesílení $A_k \in \Re$ splňující podmínku $\sum_{k=0}^n A_k = 1$, dopravní zpoždění $\tau_k \in \Re^+$ a počet pulzů $n \in \Re^+$ [3].

$$\xrightarrow{w} S(s) \xrightarrow{v} \bigotimes_{e} \xrightarrow{e} C(s) \xrightarrow{u} \bigotimes_{e} \xrightarrow{d} G(s) \xrightarrow{x} F(s) \xrightarrow{\theta}$$

Obr. 1. Blokové schéma regulačního obvodu s tvarovačem jako filtrem referenčního signálu , převzato a upraveno z [4]

1.1.1. Tvarovač nulových vibrací

Existuje mnoho modifikací rovnic tvarovačů, (4), (5), z nichž nejznámnější jsou známé jako Tvarovač nulových vibrací (v anglické literatuře známý jako Zero Vibration) a Derivační tvarovač nulových vibrací (Zero Vibration Derivative) [1], nicméně, jak bylo ukázáno v článku, [5], tyto varianty tvarovačů signálu nejsou vhodné pro zpětnovazebné zapojení z důvodů nebezpečí destabilizace regulačního obvodu, viz článek [5]. V této práci je použit pouze nový typ tvarovače zvaný, Tvarovač nulových vibrací s distribuovaným zpožděním (D_eZV), poprvé zmíněný v [6], který obsahuje jak soustředěné tak rovnoměrně rozložené dopravní zpoždění. Tento tvarovač je definován následující přenosovou funkcí: [6]

$$S(s) = A + (1 - A)\frac{1 - e^{-sT}}{Ts}e^{-s\tau},$$
 (6)

kdeT je délka distribuvaného zpoždění
a τ je hodnota soustředěného zpoždění. Parametry tohoto tvarovače
 A, Ta τ lze pro $T \in (0, \frac{\pi}{\Omega}]$ určit analytickým způsobem jak bylo ukázáno v
 [3] pomocí následujících rovnic [3]:

$$\tau = \frac{\pi + \varphi}{\Omega},\tag{7}$$

$$A = \frac{me^{\frac{\beta}{\Omega}(\pi+\varphi)}}{1+me^{\frac{\beta}{\Omega}(\pi+\varphi)}},\tag{8}$$

kde,

$$m = \left| \frac{1 - e^{-sT}}{Ts} \right|,\tag{9}$$

$$\varphi = \arg\left(\frac{1 - e^{-sT}}{Ts}\right) \tag{10}$$

1.2. Regulační obvod s inverzním tvarovačem

Klasické zapojení tvarovače signálu v regulačním obvodu je znázorněno na Obr. 1. Nevýhoda této architektury spočívá v nemožnosti potlačení vibrací způsobené neměřitelnými poruchami d [5]. To je patrné z přenosu (11),

$$T_{dy} = \frac{G(s)}{1 + C(s)G(s)S(s)}F(s),$$
 (11)

kde se nuly tvarovače nevyskytují v čitateli přenosu T_{dy} a nekompenzují tak vibrace vyvolané poruchou *d*. Tento nedostatek řeší zpětnovazební architektura s inverzním tvarovačem, která byla představena ve článku [5], znázorněná na Obr. 2. Přenos inverzního $D_e ZV$ tvarovače je [5]:

$$S^{-1}(s) = \frac{1}{A + (1 - A)\frac{1 - e^{-sT}}{Ts}e^{-s\tau}}$$
(12)

Obr. 2. Blokové schéma regulačního obvodu s inverzním tvarovačem, převzato a upraveno z [5]

Nuly tvarovače S(s) se nyní vyskytují jak v čitateli tak ve jmenovateli a dochází tak k kompenzaci vibrací vyvolaných poruchou d.

$$T_{dy} = \frac{G(s)S(s)}{S(s) + C(s)G(s)}F(s)$$

$$\tag{13}$$

Nicméně, zapojením inverzího tvarovače ve zpětné vazbě, dochází rovněž ke vzniku dopravního zpoždění ve zpětné vazbě se kterým je třeba počítat při návrhu regulátoru.

2. Řízený systém

Rízeným systémem je elektro-mechanická soustava, znázorněná na Obr. 3 a Obr. 4, skládající se z vozíku a k němuž je připojen vozík b pomocí pružin, dále je na vozíku b uloženo kyvadlo p. Aktivní částí je vozík a, který je spojen s řemenem poháněným aktuátorem servomotorem. Vozíky jsou uložené na kolejníčkách pomocí lineárních kuličkových ložisek. Měřené veličiny jsou poloha vozíků x_a , x_b a výchylka kyvadla θ . Naměřené hodnoty jsou poslány do PC kde je pomocí

programu Simulink vyhodnocen řídící signál, který je předán řídící desce a následně servomotoru.

Obr. 3. Řízený systém, a - aktivně poháněný vozík, b - pasivně připojený vozík, p - závaží kyvadla

Obr. 4. Schématické znázornění řídícího systému

2.1. Matematický model řízeného systému

Pro zjednodušení jsme se rozhodli neuvažovat vliv pružení řemene a vzhledem k vysoké rychlosti aktuátoru uvažujeme přenos řídícího signálu (vstupní napětí) na akční zásah bez zpoždění. Hmotnost kyvadla je soustředěna v závaží a hmotnost závěsného lanka je zanedbatelná, proto kyvadlo uvažujeme jako matematické kyvadlo se třením v závěsu. Dále předpokládáme pohyb vozíků *a* a *b* pouze jako pohyb posuvný se třením a pružiny s lineární charakteristikou. Další zanedbatelné vlivy jako je odpor vzduchu neuvažujeme. Vlastní pohybové rovnice (VPR) byly s uvažováním malých $\pm 5(^{\circ})$ výchylek kyvadla θ zlinearizovány ($cos(\theta) = 1, sin(\theta) = \theta$). Pomocí VPR rovnic byl sestaven stavový popis pro lineárně časově invariantní (LTI) systém. Indexy *a*, *b* a *p* značí vozíky *a*, *b* a kyvadlo *p*.

Obr. 5. Schéma a silové poměry mechanické části systému, převzato a upraveno z [7]

Stavová formulace systému, znázorněného na Obr. 5, je definována následovně:

$$\dot{\boldsymbol{x}} = \boldsymbol{A}\boldsymbol{x}(t) + \boldsymbol{B}\boldsymbol{u}(t), \qquad (14)$$

kde x je stavový vektor s veličinami, x_a , \dot{x}_a , x_b , \dot{x}_b , θ , $\dot{\theta}$, označující, polohu vozíků a, rychlost vozíku a, polohu vozíků b, rychlost vozíku b, výchylku a úhlovou rychlost kyvadla p.

Matice dynamiky systému má následující tvar:

$$\boldsymbol{A} = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ -\frac{k_s}{m_a} & -\frac{b_s + \mu_a}{m_a} & \frac{k_s}{m_a} & \frac{b_s}{m_a} & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ \frac{k_s}{m_b} & \frac{b_s}{m_b} & -\frac{k_s}{m_b} & -\frac{b_s + \mu_b}{m_b} & \frac{m_p g}{m_b} & \frac{b_p}{l_p m_b} \\ 0 & 0 & 0 & 0 & 0 & 1 \\ -\frac{k_s}{l_p m_b} & \frac{-b_s}{l_p m_b} & \frac{k_s}{l_p m_b} & \frac{b_s}{l_p m_b} & \frac{-(m_b + m_p)g}{l_p m_b} & \frac{-\mu_p (1 + \frac{m_b}{m_p})}{l_p^2 m_b} \end{pmatrix}$$

$$(15)$$

jejíž parametry jsou hmotnosti m_a , m_b a m_p , tuhost k_s a tlumení b_s pružiny, kinematické tření μ_a , μ_b a μ_p , délka kyvadla l_p a gravitační zrychlení g.

Matice vstupů má následující tvar:

$$\boldsymbol{B} = \begin{pmatrix} 0 & \frac{s_a}{m_a} & 0 & 0 & 0 & 0 \end{pmatrix}^T, \quad (16)$$

kde s_a je statické zesílení.

Vstup systému je dán poměrnou silou:

$$\boldsymbol{u}(t) = \left(\frac{F}{s_a}\right),\tag{17}$$

Výstupní rovnice:

$$\boldsymbol{y}(t) = \boldsymbol{C}\boldsymbol{x} + \boldsymbol{D}\boldsymbol{u}(t) \tag{18}$$

Matice výstupů:

$$\boldsymbol{C} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$
(19)

Matice vazeb vstupů na výstup:

$$\boldsymbol{D} = (0 \ 0 \ 0 \ 0 \ 0 \ 0)^T \tag{20}$$

2.2. Kompenzace tření

Během našich experimentů bylo zjištěno že vliv statického tření vozíků a není zanedbatelný a je nutné s ním při návrhu řízení počítat. Rozhodli jsme se použít metodu třecího pozorovatele popsanou v článku [8] pro kompenzaci nelinearit řízeného systému způsobené třením. V ideálním případě lze za pomocí této metody považovat řízený systém za téměř lineární. Princip této metody spočívá v odhadu síly statického tření F_s . Odhad statické třecí síly \hat{F}_s je proveden pomocí matematického modelu tření, jenž určí hodnotu kompenzačního signálu u_{comp} . Tento signál je následně sečten s řídícím signálem u za účelem kompenzace statické třecí síly F_s . Použitý matematický model byl klasický statický model tření s coloumbovým třením a stikcí, jenž je popsán následovně [8]:

$$F_{s} = \begin{cases} F_{col} \cdot sign(\dot{x}) & P\dot{x} \neq 0\\ F_{e} & \dot{x} = 0 \& |F_{e}| < F_{st} \\ F_{st} \cdot sign(F_{e}) & \dot{x} = 0 \& |F_{e}| \ge F_{st}, \end{cases}$$
(21)

kde F_e je vnější budící síla, F_{col} síla coloumbova tření a F_{st} síla stikce. Parametry modelu (21) byly určeny experimentálně, $F_{st} = 5.52(N)$ a $F_{col} = 0.72(N)$. Aktuální hodnota rychlosti vozíku \dot{x}_a je stanovena pomocí stavového pozorovatele navrženým pro lineární model (15), (16) s odhadnutými parametry na základě měření. Blokové schéma použitého třecího pozorovatele je znázorněno na Obr. 6.

Obr. 6. Blokový diagram použitého schématu pro kompenzaci tření, převzato a upraveno z [8]

Kde C(s) je regulátor a A(s) aktuátor.

2.3. Identifikace systému

Parametry systému (15) byly nejdříve určeny na základě měření a následně dolaďěny pomocí experimentální identifikace, takovým způsobem aby dynamika lineárního modelu co nejvíce odpovídala dynamice reálného systému. Určené parametry jsou následující, $m_a = 2(kg), m_b = 1.25(kg), m_p = 0.81(kg), \mu_a = 13.7(N.s.m^{-1}), \mu_b = 3(N.s.m^{-1}), \mu_p = 0.02(N.s.m^{-1}), l_p = 0.48(m), k_s = 390(N.m^{-1}), b_s = 3(N.s.m^{-1}), s_a = 4.8(N.V^{-1}).$

Obr. 7. Odezva systému bez kyvadla na impulz, žlutě lineární model, oranžově - odezva systému s kompenzací, modře - odezva systému bez kompenzace

Na Obr. 7 jsou výsledky měření odezvy systému bez kyvadla na impulz, kde je znázorněn vliv použitého kompenzačního schématu na Obr. 6. Rozdíl ustálené polohy mezi odezvou lineárního systému a odezvou systému s kompenzací je prospěšný jeli kladný, jelikož se tak redukuje možnost překompenzace a následné možné destabilizaci regulačního obvodu s regulátorem navrženým pro lineární model.

Obr. 8. Odezva systému na impulz, žlutě - lineární model, oranžově - odezva systému s kompenzací, modře - odezva systému bez kompenzace

Na Obr. 8 je vidět že tření tlumí oscilaci vozíků buzenou kyvadlem.

3. Návrh řízení

Při návrhu řízení soustavy byl navržen regulátor pro zpětnovazební řízení bez tvarovače, navržený regulátor byl pak také ověřen pro zpětnovazební zapojení s inverzním tvarovařem. Řízenou veličinou je poloha vozíku b, která je na Obr. 5.

3.1. Návrh regulátoru

Pro řízení astatického systému byl zvolen PD regulátor s filtrem ve tvaru:

$$C(s) = \frac{K_0 + K_d s}{Ns + 1} \tag{22}$$

Parametry $K_0 = 30$, $K_d = 1$ a konstanta filtru N = 0.02, byly určeny experimentální parametrizací s cílem dosáhnout nekmitavé odezvy systému bez kyvadla, současně byla sledována robustnost uzavřeného regulačního obvodu. Bezpečnost v zesílení je 9.93(dB) pro dělící frekvenci fáze $17.7(rad.s^{-1})$ a bezpečnost ve fázi 0.455(rad) pro dělící frekvenci zesílení $3.83(rad.s^{-1})$. Bodeho diagram pro rozpojený regulační obvod C(s)G(s) je na Obr. 10.

Obr. 9. Bodeho diagram pro rozpojený regulační obvod

3.2. Návrh tvarovače signálu

Pro návrh tvarovače bylo zapotřebí určit vlastní frekvenci ω_0 a poměrný útlum ζ kyvadla. Tyto parametry byly určeny na základě měření kmitů kyvadla pro které byl pak identifikován model kyvadla.

Obr. 10. Měřené kmity kyvadla - modře, identifikovaný model kyvadla - oranžově

Identifikované parametry jsou $\omega_0 = 4.1(rad.s^{-1})$ a $\zeta = 0.0026$. Pomocí vztahů (2), (3), (7), (8) byly určeny parametry $D_e ZV$ tvarovače:

 $T = 0.77(sec), \ \tau = 0.38(sec), \ A = 0.39$ (23)

Výsledky navrženého systému řízeni s tvarovači signálu

V této kapitole jsou prezentovány dosažené výsledky v řízení laboratorního systému. Systematicky jsou porovnány simulační a experimentální výsledky ve třech konfiguracích: i) Regulační obvod bez tvarovače signálu, ii) Regulační obvod s tvarovačem v přímé větvi, iii) Regulační obvod s inverzním tvarovačem ve zpětné vazbě.

Obr. 11. Porovnání řízení, žlutě - řízení s inverzní tvarovač, oranžově - řízení s tvarovačem jako filtr referenčního signálu, modře - řízení bez tvarovače

Na Obr. 11 jsou porovnány výsledky měřených konfigurací řízení. Je zřejmé že doba náběhů je v případě řízení s tvarovačem výrazně delší, nicméně rovněž dochází k žádanému potlačení oscilací kyvadla a podařilo se nám tak potvrdit funkčnost tvarovačů signálů pro tlumení vibrací flexibilních systémů.

Obr. 12. Tvarovač v dopředném zapojení, modře - měření, červeně - simulace

Inverzní tvarovač zapojený v zpětné vazbě RO - porovnání simulace a experimentu

Obr. 13. Inverzní tvarovač v zpětnovazebném zapojení, modře - měření, červeně - simulace

Na Obr. 12 a Obr. 13 jsou porovnány výsledky simulace s výsledky měření pro tvarovač v dopředném zapojení a inverzní tvarovač v zpětnovazebném zapojení. Na obou obrázcích je patrné že v případě simulace dochází k výraznějšímu potlačení oscilací. To je velmi pravděpodobně zapříčiněno menší robustností navrženého tvarovače.

5. Závěr

Pro laboratorní úlohu byl sestaven matematický model, který byl následně úspěšně identifikován. Kompenzace nelinearit způsobené třením pomocí třecího pozorovatele se ukázala jako efektivní metoda i přes velmi jednoduchý matematický model tření. Na základě měření byla ověřena funkčnost tvarovačů pro potlačení oscilačních módů soustavy. Úroveň tlumení

oscilací byla u obou způsobu zapojení tvarovače téměř totožná. Efektivnější potlačení oscilací v simulačních výsledcích, je dáno především aproximační povahou lineárního modelu, který zachycuje pouze dominantní složky systému, který je ze své povahy nelineární. I přesto jsou dosažené výsledky v potlačení oscilací kyvadla na komplexní laboratorní úloze velmi dobré. Budoucí aktivity budou směřovány na zvýšení robustnosti návrhové metody a to s využitím tvarovačů s komplexnější strukturou.

Poděkování

Tato práce byla podpořena grantem Studentské grantové soutěže ČVUT č. SGS17/176/OHK2/3T/12

Seznam symbolů

- Α matice dynamiky (-)
- Azesílení tvarovače (1)
- A(s) přenos aktuátoru (N.V⁻¹)
- matice vstupů (-) B
- $b_s \\ \mathbf{C}$ tlumení pružiny $(N.s.m^{-1})$ matice výstupů (-)
- C(s) přenos regulátoru (V.m⁻¹)
- D matice vazeb vstupů na výstup (-)
- F(s) přenos flexibilního systému (-)
- F_s síla statické tření (N)
- \hat{F}_s odhad síly statického tření (N)
- F_{col} coloumbova třecí síla (N)
- F_{st} síla stikce (N)
- G(s) přenos systému (-)
- gravitační zrychlení $(m.s^{-2})$
- K_d konstanta deriv. složky regulátoru (s)
- K_0 konstanta prop. složký regulátoru (1) k_s tuhost pružiny (N.m⁻¹)
- mmodul komplexního čisla (1)
- délka kyvadla p (m) l_p
- hmotnost vozíku a (kg) m_a
- hmotnost vozíku b (kg) $m_{\rm h}$
- m_p hmotnost kyvadla p (kg) Ń
- konstanta filtru regulátoru (s)
- S(s) přenos tvarovače (-) S^{-1} přenos inverzního tvaro
- přenos inverzního tvarovače (-)
- statické zesílení $(N.V^{-1})$ $\frac{s_a}{T}$
- délka rovměrně roz. dopr. zpoždění (s)
- T_{dy} přenos poruchy (-)
- poloha vozíku a (m) x_a
- poloha vozíku b (m) x_h

- \dot{x}_a rychlost vozíku a $(m.s^{-1})$ rychlost vozíku b (m.s⁻¹)
- \dot{x}_b zrychlení vozíku a (m.s⁻²) \ddot{x}_a
- zrychlení vozíku b (m.s⁻²) \ddot{x}_b
- poměrný útlum (1) ζ
- $\hat{\theta}$ výchylka kyvadla $(rad.s^{-1})$
- $\dot{\theta}$ úhlová rychlost kyvadla (rad. s^{-1})
- $\ddot{\theta}$ úhlová zrychlení kyvadla (rad. s^{-2})
- kinematické tření vozíku a $(N.s.m^{-1})$ μ_a
- kinematické tření vozíku b $(N.s.m^{-1})$ μ_b
- kinematické tření kyvadla p $(N.s.m^{-1})$ μ_p
- argument komplexního čísla (rad) ϕ
- hodnota soustředěného dopr. zpoždění (s) au
- vlastní frekvence $(rad.s^{-1})$ ω_0
- tlumenná vlastní frekvence $(rad.s^{-1})$ Ω

Literatura

- [1]W. Singhose W.Seering. Command Generation for Dynamic Systems. 2. Atlanta GA, William Singhose, 2013.
- W. Singhose J.R. Huey K. L. Sorensen. Useful appli-[2]cations of closed-loop signal shaping controllers. Elsevier, Control Engineering Practice 16, pp. 836-846, July 2008.
- T. Vyhlídal M. Hromčík. Parameterization of input [3] shapers with delays of various distribution. Elsevier, Automatica 59 (2015), pp. 256-263, September 2015.
- [4] V. Kučera-M. Anderle T. Vyhlídal M. Hromčík. On feedback architectures with zero vibration signal shapers. IEEE Transactions on Automatic Control Volume: 61, Issue: 8, pp. 2049 - 2064, October 2015.
- [5] T. Vyhlídal V. Kučera M. Hromčík. Inverse signal shapers in effective feedback architecture. Zürich European Control Conference, IEEE, pp. 4418-4423, July 2013.
- [6] T. Vyhlídal M. Hromčík V. Kučera. Zero vibration shapers with distributed delays of various types. Florence, 52nd IEEE Conference on Decision a Control, IEEE, pp. 940-945, December 2013.
- [7] Erik Neumann. Cart and Pendulum. myphysicslab.com. Dostupné z: https://www.myphysicslab. com / pendulum / cart - pendulum / cart - pendulum en.html (cit. 07.04.2017).
- [8] C. Canudas de Wit K.J. Åström H. Olsson P. Lischinsky M. Gäfvert. Friction Models and Friction Compensation. Elsevier, European Journal of Control vol. 4, no. 3, pp. 176-195, December 1998.