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Abstract 

Paper presents our system for the fault detection and identification (FDI) and a comprehensive overview of the changes and im-

provements made by author. FDI system is based on a Markov model. The main presented enhancements include the introduction 

of a dynamic model for transients between failures and application of empirical modal decomposition algorithm to observed data in 

order to find closer relations to the individual faults. 
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Introduction 

Modern trends in the industry are directed towards in-

creasing automation and thus the autonomy of techno-

logical processes. The aim is to reduce potentially haz-

ardous human factor and to move the operator role from 

the executive towards the decision field. Larger autono-

my requires a more advanced system for fault detection, 

isolation and identification. It is necessary to ensure the 

safety, security and environmental protection. Early 

detection, identification and eventual removal of the 

fault can help to avoid a complete breakdown of the 

system and thus to the irreparable damage or to loss of 

human life. 

The role of fault diagnosis is generally to detect as 

quickly as possible each deviation from the regular sys-

tem behavior, while it should minimize the number of 

wrong decisions. Once the fault is detected, the actions 

aimed to minimize its consequences usually follow. 

Therefore, it is important to properly locate and describe 

the fault discovered. The monitoring system used to 

detect faults, to locate them and to determine their sever-

ity is called the Fault Diagnosis System. The task of fault 

diagnosis consists of detection, isolation and identifica-

tion. Fault detection is based on simple decision, if the 

system is in fault condition. This does not necessarily 

mean a complete collapse of the system, but generally 

speaking, any sufficiently significant deviation from the 

desired function. Fault isolation is task to accurately 

locate the source(s) of failure, e.g. a faulty sensor, a 

structural change in the system, improper human inter-

vention to the controls, etc. Fault identification aims to 

specify the kind and extent of the fault. 

Markov chains are special stochastic models, which are 

characterized by the so-called Markov property. Markov 

property says that the probability of the current state of 

some process does not depend on its entire previous 

history but only on its immediately preceding state. The 

main advantage of Markov chain models is the possibil-

ity to work with a strongly nonlinear systems and rela-

tively easy identification. The disadvantage, especially 

when working in real time, is a large volume of data 

processed and also large dimensions of transition matrix. 

Also a discrete nature of the Markov model may be a 

slight constriction. 

Hilbert-Huang transformation (HHT) belongs among 

time-frequency signal analysis methods. It consists in the 

decomposition of sample signal into components using 

empirical mode decomposition (EMD) and the subse-

quent application of the Hilbert transform (HT) in order 

to find the instant frequencies and instant magnitudes of 

the oscillating signal. For a reasonable usage of HT, the 

signal spectrum must be as narrow as possible and the 

mean value of signal must be close to zero. EMD de-

composes signal into components (intrinsic modal Intrin-

sic functions - IMF) that satisfies above conditions very 

well. IMFs represent modes of signal oscillation and 

those satisfy above conditions very well. Especially for 

Markovian FDI system, it is also important that the IMF 

can be used to design a good regression vector. 

1. Markov fault diagnosis system 

Markov FDI model is a special case of Markov model. 

The regression vector (RV) consists of input and output 

quantities of monitored system. State of monitored sys-

tem predicted by Markov FDI is understood as its fault 

condition, i.e. it estimates, which fault state actually 

appeared. (From this perspective, the fault-free state or 

nominal behavior is only one of known fault states.) 

For the identification of the Markov model it is required 

to have a sufficiently large amount of data for each ex-

pected failure as well as for the fault-free state of the 

monitored system. This dataset is used to create the sta-

tistics of dependencies between the instances of RV and 

the appropriate fault condition of the monitored system. 

The structure of the regression vector is crucial for the 

quality of the FDI. 

Output from our Markov FDI system is probability dis-

tribution of known fault states. Then the most probable 

fault state is easy to estimate. E.g. the nominal behavior 

is represented by number 0, first fault state by 1 etc. It is 

also possible to distinguish an unknown new state. Typi-
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cally (with well designated RV structure), one fault state 

is significantly more probable than all the others. If the 

fault condition probability distribution is flat (i.e. actual 

probabilities of all known fault states are almost same), it 

seems to be an unknown fault state. 

Markov FDI system works in two stages: 

• Learning stage. At this stage, the Markov model with 

the chosen structure of RV generates statistics based on 

training dataset obtained from monitored system. This 

dataset must be appropriately prepared; it must cover all 

possible fault (and fault-free) states that might occur. 

During this stage the system must have available an 

additional information about the current fault state. The 

result is a transition matrix between known values (in-

stances) of regression vector and individual fault states 

(fault condition of system). 

• Diagnostic stage. During this stage the FDI system has 

no information about actual fault condition of monitored 

system but just the opposite FDI must estimate it. The 

monitored quantities are continuously transformed into 

the RV instance, which is compared to known RVs with 

trained statistics. Then it outputs the actual probability 

distribution of the known fault states. Then the most 

probable fault is selected and then passed on for further 

use. 

Both stages can alternate. When a new unknown fault 

occurs (fault-free behavior of the system does not re-

spond, nor any of the known fault states), the learning 

can be applied retroactively using continuously recorded 

behavior of monitored system and the new fault can be 

added to the statistics. 

2. Dimensionality reduction 

The biggest problem of Markov model based methods is 

a huge dimensionality of the statistics or the transition 

matrix. In our system, the method of Approximation of 

Markov chains based prediction (AMCP) (see [1]) is 

used to reduce size of transition matrix. If the new in-

stance of regression vector (RV) is obtained (i.e. un-

known combination of values of measured quantities), 

then the similar known RV instances (neighborhoods) 

are found, then their relevancy (weight) is computed 

based on their distance from actual RV and finally the 

statistics for new RV is computed from weighted statis-

tics of neighborhoods. Due this method, much less 

amount of RV must be stored and thus the transition 

matrix is significantly smaller while maintaining the 

same quality of FDI. 

3. Dynamics of state transitions 

The recognition of faults with fast dynamics can be fair-

ly faster, if we use a somewhat different categorization 

of fault states than that described above.  

Data series used as source for generating of statistics in 

the Markov FDI model must be relatively long. It pri-

marily contains steady data when the system persists in 

some fault state. Then individual parameters of the sys-

tem remain in a relatively narrow range of its values with 

only small variations. However, the data series includes 

also very significant, although relatively very short tran-

sitions between steady states. Therefore the dataset as-

signed to the fault state is quite dynamically unbalanced, 

because in addition to the relatively small amount of data 

gathered during transition occurs a large amount of data 

gathered in a steady state or in its vicinity.  

The dynamic unbalance of the source data while learning 

introduces a bias into the statistics and thus the entire 

Markov FDI model. However, the shape and dynamics 

of the transition are very important for the correct FDI. 

Transients are often only fault indicators, because after 

settling the RV returns almost to the original state. 

Redefined set of fault states serves as a solution to the 

above problem (see [2]).  

 

Fig. 1. The dynamic nature of the transitions between faults. 

 

This change preserves the shape of the regression vector 

and the range and resolution of the measured quantities, 

but it changed the categorization of fault states. Each 

fault state is divided into a steady part and one or more 

transient parts. The steady part replaces the original fault 

state and each of the transient parts is associated to a 

new fault state. From the viewpoint of the Markov FDI 

model the set of fault states and thus the statistics and the 

transition matrix changes, but the algorithm itself stays 

unchanged.  

Consider that individual faults does not combine each 

other because the failure always occurs after long inter-

val of nominal behavior and the system returns back to 

the nominal behavior after removal of the fault source. 

Then each fault state disintegrates into exactly two fault 

sub-states (one “steady” sub-state and one “transition 

from failure-free” sub-state) and only the failure-free 

state breaks up into n + 1 sub-states, where n is the num-

ber of transients from individual faults back into the 

nominal behavior. 

The taking into account of the dynamic nature of the 

monitored system is especially useful in case of rapid 

start of fault. Experiments show that the time required to 

detecting the fault shortened by up to half. 
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4. Enhanced logic module 

In order to take into account the relation of steady and 

transient sub-states to the common state, the diagnostic 

system has been improved by the enhanced logic module 

(ELM). In fact, the ELM is a simple rule-based system 

that is able to solve primarily two tasks: 

• Pooling of states. It enables to cover multiple sub-

states by one common state. In case of realization of the 

dynamic approach of FDI this mechanism enables to link 

the transient and steady fault sub-states, so that we get 

back only one general fault state for each alarm. Howev-

er, because the link between sub-states is only qualitative 

but not quantitative, the importance transient sub-state 

stays high. 

• Chaining of states. Known information about dynamic 

system properties enables usually to derive simple rules 

which can significantly reduce the amount of possible 

transitions between its states. This applies for the set of 

fault states (and sub-states), too. E.g. consider steady 

states A,B,C and transition states A→B,B→A. Then the 

sequence of states A, A→B, B or A, A→B, B→A can 

occur with high probability, while the sequence 

A, A→B, C is almost impossible. The set of rules that 

defines the transient probabilities between known fault 

sub-states is not used directly to estimate the current 

fault state but it gives rule to decide in case of ambigu-

ous outcome from the Markov model. 

4. EMD based regression vector 

As stated above, the structure of the regression vector 

has a major impact to the quality of fault detection and 

identification. Interesting possibilities offers a decompo-

sition of measured quantities using empirical mode de-

composition algorithm (EMD), if we build a regression 

vector only from the obtained intrinsic modal functions 

(IMF). Each IMF represents some signal oscillation 

mode which is associated to some component of dynam-

ic behavior of the monitored signal. This can be used to 

obtain a more detailed representation of the dynamics of 

the system as well as to create a RV structure which 

reflects better the differences between the various fault 

states. 

The EMD is carried out in recursive sifting algorithm in 

which the spurious trends are gradually removed from 

the signal until the residue satisfies the IMF definition 

with sufficient precision (i.e. envelopes of local extremes 

are symmetrical around zero mean value). Then this IMF 

is separated from the original signal and a next round of 

sifting algorithm applies on the residual signal. Sifting 

algorithm is repeated until all possible IMFs are found. 

Final residue that is not possible to decompose repre-

sents the overall trend of the original signal within the 

entire dataset. 

In order to take advantage of EMD in fault diagnosis, it 

has been necessary to select its online variant capable of 

the decomposition continuously in real time. Problemat-

ics of online EMD deal articles [3], [4]. 

 

 

 

Fig. 2. The principle of the sifting algorithm of EMD.  

 

5. Conclusion 

The Markov Fault Detection and Identification system is 

based on the Markov model with the transition matrix 

dimensionality reduction algorithm. The empirical mode 

decomposition has been applied to the observed data in 

order to obtain more detailed regression vector structure. 

The model of the diagnostic system has been enhanced 

by the dynamical field of view on the data obtained from 

a monitored system and the dynamical character of tran-

sitions between its fault states.  

Also the enhanced logic module has been included into 

FDI system thus it is possible to use extra information 

about dependencies between fault sub-states or about 

some properties of monitored system.  
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Abbreviations 

AMCP Approximation of MC-based Prediction 

ELM Enhanced Logic Module 

EMD Empirical Mode Decomposition 

FDI Fault Detection and Identification 

HT Hilbert Transform 

HHT Hilbert-Huang Transform 

IMF Intrinsic Modal Function 

MC Markov Chain 

RV Regression Vector 

 

Sources 

[1] GARAJAYEWA, Guncha: Bayesian approach to real-

time fault detection and isolation with supervised train-

ing, PhD. dissertation work. Praha: ČVUT v Praze, 2005, 

vedoucí disertační práce prof. Ing. Milan Hofreiter, CSc. 

[2] HOFREITER, Milan - TRNKA, Pavel: Fault Diagnosis 

for Nonlinear Stochastic Dynamic Systems. In: Proceed-

ings of The 9th International Conference Process Control 

2010, Pardubice: Universita Pardubice, s. C009b - 1-9. 

ISBN 978-80-7399-951-3. 

[3] TRNKA, Pavel - HOFREITER, Milan: The Empirical 

Mode Decomposition in Real-Time. In: Proceedings of 

the 18th International Conference on Process Control. 

Bratislava: Slovenská technická univerzita, 2011, s. 284-

289. ISBN 978-80-227-3517-9.  

[4] TRNKA, Pavel - HOFREITER, Milan: Empirická modá-

lní dekompozice environmentálních časových řad v 

reálném čase. In: Automatizácia a riadenie v teórii a 

praxi 2011. Košice: Technická univerzita v Košiciach, 

2011, s. 52-1-9. ISBN 978-80-553-0606-3.  

 

 


