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Abstract
A damage operator approach for non-isothermal loading is applied for lifetime calculation of the thermomechanically
loaded turbine housing of a turbocharger. Combination of thermomechanical fatigue and creep is considered, oxidation
is taken into account indirectly. Results from transient thermal and structural FEA have been transferred to C++
post-processing program and both fatigue and creep damage predicted. Critical zones corresponding to the loading are
identified.
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1. Introduction

Turbine housing of the turbocharger provides kinetic
energy, needed for charging, using remaining enthalpy
of the exhaust gas. The component operates usu-
ally below 600◦C, but temperature can exceed up
to 800◦C. Inhomogeneous distribution of temperature
and boundary conditions of the component constrains
thermal expansion, resulting in inelastic strains and
stresses. This is termed termomechanical fatigue
(TMF). At high temperature, creep or relaxation oc-
curs and time dependent plasticity significantly af-
fects lifetime and cannot be neglected. This all is due
to variable service conditions, which usually contains
start up, load, partial load and shutdown [1]. Oper-
ating status for the investigated component is nearly
cyclically stable.

Main damage mechanisms for components oper-
ating at high temperatures are fatigue, oxidation and
creep [2]. Creep becomes significant especially at
high temperature and for long dwell periods. It’s
also known, that fatigue and creep damage could
be treated separately. Enviromental effect could be
also separated [3]. In this case, oxidation is taken
into account indirectly, as test were performed un-
der ambient conditions and not in a vacuum. Fatigue
and creep damage is computed separately, based on
Palmgren-Miner linear accumulation rule.

Thermal and structural finite element analysis
(FEA) is a must for a lifetime prediction of the com-
ponents subjected to thermomechanical fatigue [4].
Temperature field can result from steady-state or
transient analysis. Structural FEA can be either elas-
tic, elastoplastic or viscoplastic.

The aim of this paper is to present a damage oper-
ator approach (DOA) application [5, 6, 7] for the tur-
bine housing, based on transient thermal and elasto-
plastic structural FEA with viscoplastic aproximation
as a part of the post-processing step. In the case
of DOA, continuous damage calculation is possible
for both isothermal [8, 9] and non-isothermal loading
[10].

2. Material data assessment
Material of the investigated component is Si-Mo 4.06.
In terms of elastoplastic material data identifica-
tion, isothermal LCF tests have been attained at
20◦C, 400◦C, 550◦C, 650◦C and 750◦C; as symmet-
ric triangular shaped cycles at constant strain rate
ε̇11 = 3.10−3s−1, no dwell periods, fully reversed
(Rε = −1), total strain range ∆ε11 from 0.005 to
0.024. For this strain rate, effect of cyclic creep should
be almost excluded.

Viscoplastic material data has been identified
from relaxation tests for three selected temperatures
(550◦C, 650◦C ad 750◦C) with five-minute hold time
at peak strain in tension, for ∆ε11 = 0.012.

Creep rupture tests under constant load have been
performed at three temperatures and three different
stress levels, as creep damage is expected to con-
tribute less than fatigue damage [6].

All experiments have been performed on the test
stand in 12105 laboratory [11].

2.1. Elastoplastic material data

Life assessment of high temperature components un-
der cyclic deformation conditions depends on the se-
lected material model. Here, an elastoplastic consti-
tutive model used is used for the FEA. Widely ac-
cepted and popular non-linear Chaboche kinematic
hardening model has been selected, capable to de-
scribe time-independent cyclic plasticity [12, 13]. In-
cremental formulation of the model is as follows

dεεε = dεεεe + dεεεpl (1)

σσσ = aaa : εεεe (2)

dεεεpl = dλ
∂f

∂σσσ
, dλ =

√
2

3
dεεεpl : dεεεpl (3)

f =

√
3

2
(σσσ′ −ααα′) : (σσσ′ −ααα′)− σY = 0 (4)

dαααi =
Ci
σY

(σσσ −ααα)dλ− γiαααidλ+
1

Ci

∂Ci
∂T

αααidT (5)
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dαααi =

m∑
i=1

dαααi. (6)

Mechanical strain tensor dεεε is a linear combination
of reversible elastic part dεεεe and inelastic part dεεεpl,
Eq.(1). Stress tensor σσσ is obtained from the gener-
alized Hooke’s law for a linear, elastic and isotropic
continuum, Eq.(2), aaa denotes fourth order elastic ten-
sor. Associated flow rule is assumed, Eq.(3), dλ de-
notes plastic multiplier. Von Mises yield function f is
defined in Eq.(4), where σσσ′,ααα′ and σY are deviatoric
stress tensor, deviatoric backstress tensor and the ini-
tial size of yield surface at zero plastic strain, respec-
tively. σY remains constant, as isotropic hardening is
neglected, as usual for TMF. Simulated Baushinger
effect and anisotropy induced by work hardening cor-
respond to a cyclic loading with continuously reversed
direction of plastic strain, this is often caused by the
alternating heating up and cooling down phases [6].

Chaboche introduced [12] that the overall back-
stress is sum of the multiple components, providing
accurate description of stress strain response, Eq.(6).
Evolution of the backstress component with accumu-
lated plastic strain is defined in Eq.(5) as a super-
position of purely kinematic term and a relaxation
term γiαααidλ introduced by Frederick and Armstrong
[14]. A temperature dependent term makes stress-
strain response independent on temperature history
and also states, that material data could be calibrated
from isothermal LCF tests. The value of Ci corre-
sponds to initial plastic modulus and Ci/γi is the
maximum amount of strain hardening occuring for
large plastic strains [13].

The number of backstress is usually considered
to be 3, with a general rule C1 � C2 � C3 and
γ1 � γ2 � γ3. The first term represents large (ini-
tial) plastic modulus, the second term corresponds to
moderate segment of stress-strain curve. Finally, the
third term describes constant hardening observed for
large strains [13], Fig. 1.
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Fig. 1. Three term backstress superposition.

Model parameters vary with temperature. Mostly
these parameters are calibrated only for the single
temperature independently, which cause model pa-
rameters to be scattered. Implementation of such
scattered data in commercial FE software packages
(e.g. ABAQUS and ANSYS) may cause convergence
issues. Also, modelling stress-strain trajectory be-
tween selected temperatures could be inaccurate. It

has been shown recently, that for a narrow range, ex-
ponential decay of parameters should be expected[15].

In this paper, model parameters have been cali-
brated to follow a monotonic downward trend, math-
ematically described as a Boltzmann function for
the temperature range 20-750◦C. Temperature de-
pendent Young modulus E is assumed to decrease
exponentialy, Eq.(10). Three backstress components
are used for stress-strain curve description, γ3 is as-
sumed to be zero. Parameters change with tempera-
ture can be written as follows

C1−3(T ) =
a01−03 − a04−06
1 + exp(T−a07a08

)
+ a04−06 (7)

γ1−2(T ) =
b01−02 − b03−04
1 + exp(T−b05b06

)
+ b03−04 (8)

σY (T ) =
c01 − c02

1 + exp(T−c03c04
)

+ c02 (9)

E(T ) = d01(1− d02 exp
T

d03
) (10)

where a01−08, b01−06, c01−04 and d01−03 are the cali-
brated constants, T (◦C) is temperature.

In terms of calibration, five hysteresis loops with
total strain range ∆ε11 = 0.012 have been selected
from isothermal LCF tests. An averaged stress–strain
response for each test was assigned by consideration
of 15 stabilized hysteresis loops at mid-life. End-life
was classically determined when 10% drop in tension
load occured. Optimization script has been devel-
oped in MATLAB. Principle is to search global min-
imum of the objective function, which was defined
as sum of squares of procentual differences between
tested and simulated stress. Initial guesses have been
obtained from the analytical solution for each tem-
perature separately. Then the objective function was
minimized, so that the hysteresis loops were simu-
lated by the analytical solution. Finally, MATLAB
Optimization toolbox was linked with ABAQUS by
simple PYTHON script [15]. Calibration model in
ABAQUS consists of five elements, each at different
(measured) temperature, with kinematic boundary
conditions corresponding to the selected strain range.
Stabilized solution is obtained with Direct cyclic pro-
cedure [16] with 50 Fourier terms. Data of five re-
sampled simulated hysteresis loops are reported by
the script to MATLAB and guessed parameters are
refreshed, until the defined requirements of the objec-
tive function are met.
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Fig. 2. Test (thin dashed line) and simulated (thick solid
line) cyclically stable hysteresis loops at 20◦C and 550◦C.
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Fig. 3. Test (thin dashed line) and simulated (thick solid
line) cyclically stable hysteresis loops at 400◦C and 650◦C.

2.2. Viscoplastic material data

Viscoplastic material data were obtained from
isothermal relaxation tests. This should represent
steady-state operating phase of the component. Law
of perfect viscoplasticity with elastic domain [13, 17]
is defined as follows

ε̇vp(t) = 〈σ(t)− k(T )

K(T )
〉N(T ) (11)

where K(T ), k(T ) and N(T ) are material and tem-
perature dependent data. The McCauley brackets 〈.〉
are used here to ensure that when |σ(t)| < k(T ) (in-
side the elastic domain) ε̇vp cancels out continuously.
The expression corresponds to Norton’s equation for
the secondary creep [18].

Viscoplastic material parameters have been cal-
ibrated separately for each temperature, values be-
tween test temperatures are obtained by PCHIP.

Constitutive law, Eq.(11), is used in viscoplastic
aproximation. If viscoplastic FEA is performed, the
constitutive law could be used as a user subroutine
or a power-law creep model [16, 18] (without elastic
domain, secondary stage creep).

Proposed approach correspond to non-unified (un-
coupled) creep-plasticity model.

3. Finite element analysis

The presented approach comprises three steps. In the
first step, a temperature field is computed from tran-
sient thermal FEA, which is subsequently used in the
sedond step, in the structural analysis. Last step in-
cludes viscoplastic aproximation and lifetime calcula-
tion with the intensive use of Prandtl type hysteresis
operators. ABAQUS was chosen for the finite element
analysis, for both transient thermal and structural.

The thermal shock test was performed on the gas
stand. Extreme temperature gradients are caused
by alternating heating-up and cooling down, Fig.
5. Maximum and minimum test temperatures rep-
resent full load and partial load, respectively. For the
purpose of numerically simulating temperature be-
haviour of the component, heat transfer coefficients
and thermal boundary conditions were calibrated on
the basis of the measurements obtained by infrared
thermography and thermocouples (M. Nesládek).

Fig. 4. Temperature field from the transient thermal
FEA for the most heated state.

Inhomogenous temperature distribution is ob-
tained from the transient thermal analysis from the
previous step. The mechanical boundary conditions
result from the mounting of the system. In gen-
eral, change in temperature of material produces ther-
mal strains, constrained thermal expansion produces
stress. The von Mises stress field computed in the
structural FEA is presented in Fig. 6.

Elastoplastic FEA model for the structural anal-
ysis of the investigated component contains a total of
almost 500,000 nodes. In the case of a time dependent
DOA, only one thermal shock needs to be perfomed.
It takes several hours to perform the analysis.

In the last step, equivalent nodal stress and tem-
peratures are transferred to post-processing program.
For this reason, User C/C++ post-processing pro-
gram [16] has been developed for the ABAQUS, pre-
serving high computation speed and direct access to
the output database.

Equivalent stresses are obtained by applying the
signed von Mises or critical plane approach. The
signed von Mises has been selected for this paper.
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Fig. 5. Temperature load history of thermal shocks of the
component (in the volute).

Fig. 6. Von Mises stress field from structural FEA for
the most heated state.

4. Damage operator based lifetime calcu-
lation

4.1. Fatigue damage

The rainflow method due to Endo [19] is widely ac-
cepted and commonly used. It’s used to decompose
an arbitrary sequence of load into cycles and to count
those cycles, together with Palmgren-Miner linear ac-
cumulation rule. In the case of TMF, temperature
is changing, this can lead to non-closed load cycles.
Thus traditional rainflow counting can be no longer
justified. It has been shown, that traditional rainflow
counting directly corresponds to the memory struc-
ture of the elastoplastic constitutive law [20]. Also,
it has been proven, that the total damage through
the Palmgren-Miner rule is a continuous functional of
the loading history and could be expressed as the to-
tal variation of the output of a hysteresis operator [9,
8]. This was eventually extended for non-isothermal
cases [10], enabling online fatigue damage calculation.

More details about equations (12)-(27) given be-
low can be found in [5, 6, 7, 10].

The equivalent stress σi(ti) and temperature his-
tory Ti(ti) are obtained from elastoplastic FEA with

kinematic hardening. First, using the DOA, uniax-
ial instantenous strain εi(ti) can be expressed in the
form of the Prandtl type operator as follows

εi(ti) =

nr∑
i=1

αj(Ti)σαj(ti) (12)

for 0 6 t1 6 t2 6 ... 6 ti 6 ..., where Ti is a cur-
rent temperature and σαj is the play operator with
general initial value given as follows

σαj(ti) = max{σi(ti)−rj ,min{σi(ti)+rj ,
αj(Ti−1)

αj(Ti)
σαj(ti−1)}}.

(13)
σαj(ti) is the backstress and follows kinematic hard-
ening, rj are yield stresses of the segment sliders,
αj(Tk) are temperature dependent Prandtl densities
and can be derived explicitly as follows

αj(Tk) =
1

rj+1 − rj
(εij+1(Tk)−

j−1∑
i=1

αi(Tk)(rj+1−ri))

(14)
in the temperature range k = 1, ..., nT and for seg-
ments j = 1, ..., nr. Values are obtained from material
and temperature dependent σi − εi cyclically stable
cyclic stress-strain curves, Fig. 7. Cyclic stress-strain
curves could be derived from Chaboche model pa-
rameters or directly from LCF tests. Here, Ramberg-
Osgood relation [21] is chosen as a decription of cyclic
stress-strain curve. Model parameters have been de-
rived from LCF tests directly and calibrated similarly
to the backstresses in Section 2.

This stage of the model can be interpreted as
a serially connected stress controlled spring-slider
model and corresponds to time-independent consti-
tutive law.
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Fig. 7. Cyclically stable cyclic stress-strain curves for
the Si-Mo 4.06.

The next part is dedicated to the calculation of
the viscoplastic strain. The true stress σ(ti−1) and
instantenous strain εi(ti) are assumed to remain con-
stant in the time step (ti − ti−1). The viscoplastic
strain is obtained as follows

εvp(ti) ≈ sgn(σ(ti−1)) · 〈 |σ(ti−1)| − k(Ti−1)

K(Ti−1)
〉N(T ) · (15)

·f · (ti − ti−1) + εvp(ti−1).
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A multiplier f is added in order to avoid vis-
cous strain discontinuity at the creep temperature
Tc = 450◦C. The multiplier is defined as follows

f =

{
exp(

Ti−1 − Tmin
Ti−1 − Tc

), Tc 6 Ti−1 6 Tmin

1.00, Tmin 6 Ti−1
(16)

where Tmin is minimum test temperature (550◦C).
The multiplier makes the viscous strain continuously
decay as the temperature decreases to Tc. There is
no creep for Ti−1 < Tc. Better accuracy could be
achieved by adding an additional subdivision of time.

In the next step, instantenous strain εi(ti) is
converted into the true stress σ(ti) and elastoplas-
tic strain εep(ti), using non-linear strain controlled
Maxwell model, Fig. 8. Elastoplastic strain is ob-
tained as follows

εep(ti) =

{
εi(ti)− εvp(ti), Tc 6 Ti−1

εi(ti)− εvp(ti−1), Ti−1 6 Tc.
(17)

True stress is obtained from the strain controlled
spring-slider model, from all segments as

σ(ti) =

nq∑
i=1

βj(Ti)εβj(ti) (18)

for 0 6 t1 6 t2 6 ... 6 ti 6 ..., where Ti is the current
temperature and εβj is the play operator with general
initial value given as follows

εβj(ti) = max{εep(ti)− qj ,min{εep(ti) + qj , (19)
βj(Ti−1)

βj(Ti)
εβj(ti−1)}}.

where εβj(ti) is the backstrain, qj are yield strains
of the segment sliders, the spring stifness βj(Tk) are
temperature dependent Prandtl densities and can be
derived explicitly as follows

βj(Tk) =
1

qj+1 − qj
(σj+1(Tk)−

j−1∑
i=1

βi(Tk)(qj+1− qi))

(20)
and can be obtained from cyclically stable cyclic
stress-strain curves.

Fig. 8. Strain-controlled non-linear Maxwell model [7].

If the viscoplastic FEA is performed, the true
stress is obtained from FEA and viscoplastic aproxi-
mation is superfluous.

At this time, true stress σ(ti) and elastoplastic
strain εep(ti) are transferred to chosen damage pa-
rameter. Following options have been selected. No
mean stress correction

P (ti) = εep(ti) (21)

and Smith-Watson-Topper parameter [22]

P (ti) = PSWT (ti) =
√

(σm(ti) + σa(ti))E(Ti)ε
ep
a (ti).

(22)
PSWT requires online signal decomposition into the
mean stress and stress and strain amplitude, details
can be found in [23].

Fatigue damage is expressed as a total variation

Df (ti) = Df (ti−1) + |D(ti)−D(ti−1)|. (23)

Damage operator D(ti) represents the cyclic damage
evolution, Fig. 9., and is expressed as follows

D(ti) =

np∑
j=1

Dj(ti) =

np∑
j=1

γj(Ti)Pγj (ti) (24)

for 0 6 t1 6 t2 6 ... 6 ti 6 ..., where Ti is a cur-
rent temperature and Pγj is the play operator with
general initial value given as follows

Pγj (ti) = max{P (ti)−pj ,min{P (ti)+pj ,
γj(Ti−1)

γj(Ti)
Pγj (ti−1)}}.

(25)
Pγj (ti) represents backstress and follows kinematic
hardening, pj are yield stresses of the segment sliders,
γj(Tk) are temperature dependent Prandtl densities
and can be derived explicitly as follows

γj(Tk) =
1

pj+1 − pj
(
dfj+1(Tk)

4
−
j−1∑
i=1

γi(Tk)(pj+1−pi)).

(26)
Values of γj(Tk) are obtained from temperature de-
pendent fatigue curves from LCF tests. Fatigue
curves need to be first transformed from the P −Nf ,
Fig. 10., to the corresponding P − df curves

df =
1

Nf
. (27)

Damage operator represents cyclic fatigue damage
evolution and follows Masing and memory rules.

Fig. 9. The Prandtl damage operator in the form of the
spring-slider model [10].
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Fig. 10. P-Nf for the Si-Mo 4.06.

4.2. Creep damage

For a known uniaxial true stress and temperature,
creep damage Dc is computed using Robinson’s rule
(time-fraction rule) as follows

Dc(ti) =
∆ti(σi, Ti)

tri(σi, Ti)
+Dc(ti−1) (28)

where ∆ti is time under current loading conditions
and tri is corresponding time to the rupture for the
same loading conditions, Fig. 11. Test were per-
formed only for limited number of samples. Missing
values are assessed by a time-temperature param-
eter. Restrained Manson-Brown parameter(RMB),
proposed in [24], is used for the calculation

RMB =
log tri − log ta T |q|−1i

(Ti − Ta〈q〉)q
. (29)
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t
R

 [h]

10

100

σ
 [M

P
a]

550°C
600°C
650°C

Fig. 11. Creep rupture curves for the Si-Mo 4.06.

Second degree polynomial is usually sufficient to
describe the stress function

RMB = a0(Ti) + a1(Ti)log σi + a2(Ti)log
2 σi. (30)

The coefficients a0, a1, a2, log ta, q and Ta are ob-
tained by least square method from the creep rupture
test data.

For each time step, RMB coefficients are trans-
ferred to the second degree polynomial as follows

log tri = b0(Ti) + b1(Ti)log σi + b2(Ti)log
2 σi. (31)

Maximal correlation coefficient has been obtained for
q = 1 in this study. That correspond to the Man-
son–Haferd parameter. Tensile-compressive creep is
assumed.

4.3. Total damage

Total damage at time ti can be obtained as follows

D(ti) = Df (ti) +Dc(ti). (32)

The assumed loading history should be doubled to ob-
tain a "stabilization" of the computed damage. Total
damage of the first run is computed as follows

D1 = D1f +D1c (33)

and total damage of the following runs as

D2 = D2f +D2c. (34)

The predicted number of cycles to failure (initiation
of a crack growth) is obtained as follows

Nf =
1−D1 +D2

D2
. (35)

In the case of D1 ≥ 1 then Nf = 1. Limit damage
value is assumed to be 1.

Fig. 12. demonstrates simulated critical
zones for the turbine housing of the turbocharger.
Smith-Watson-Topper mean stress corection, tensile-
compressive creep and signed von Mises stress are as-
sumed for the lifetime calculation. The number of
segments used is 150 (nr = nq = np = 150).
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Fig. 12. The selected simulated critical zones for the turbine housing of the turbocharger.
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5. Conclusions
Critical zones for the turbine housing of the tur-
bocharger have been identified according to the sim-
ulated thermomechanical loading. Proposed elasto-
plastic material model with kinematic hardening is
capable of describing time independent behaviour of
the component. Viscoplastic approximation enables
fast computation of viscous strain using hysteresis
operators, comprising speed and accuracy. A dam-
age operator enables continuous damage calculation,
which is especially suited for the thermomechanical
fatigue.

Future research will be dedicated especially to
viscoplasticity modelling and temperature dependent
multiaxial criterion. Also other types of loading cy-
cles are planned to be simulated on the turbine hous-
ing of the turbocharger. Finally the results should
be verified experimentally by either partial destruc-
tion or total destruction of the component on the test
stand.

The presented approach is implemented as User
C/C++ post-processing program for ABAQUS. Iden-
tification of the time-temperature and elastovis-
coplastic material parameters is implemented in the
form of a script in PYTHON and MATLAB.

All experiments have been performed on the new
test stand in 12105 laboratory [11], which has proven
to meet the requirements.

Developed software can be extended by notch for-
mula enabling fast computations from elastic FEA.
This can provide significant acceleration in the phase
of design calculations in industry.
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Nomenclature

aaa elastic modulus tensor (MPa)
Ci initial hardening modulus (MPa)
Dc creep damage (1)
Df fatigue damage (1)
df cycle damage (1)
dαiαiαi backstress term rate (MPa)
dεεε mechanical strain rate tensor (−)
dεεεe plastic strain rate tensor (−)
dεεεpl plastic strain rate tensor (−)
dλ plastic multiplier (−)
E elastic modulus (MPa)
f yield function (MPa)
K material parameter in the viscoplastic law

(MPa)
k elastic limit (MPa)
N exponent in the viscoplastic law (−)
Nf cycles to failure (−)
P (ti) damage parameter (−)
Pγj the play operator (−)
pj fictive yield of damage parameter (−)
qj fictive yield strain (−)
rj fictive yield stress (MPa)
T temperature (◦C,K)
t, ti time (s)

tri rupture time (h, s)
αiαiαi backstress term (MPa)
αj the Prandtl density (MPa−1)
βj the Prandtl density (MPa)
εepa elastoplastic strain amplitude (−)
εep elastoplastic strain (−)
εi instantenous strain (−)
εβj the play operator (−)
εvp viscous strain (−)
ε̇vp viscous strain rate (−)
γi part of the relaxation term of the backstress

(−)
γj the Prandtl density (−)
σσσ stress tensor (MPa)
σ′σ′σ′ deviatoric part of stress tensor (MPa)
σa stress amplitude (MPa)
σαj the play operator (MPa)
σm mean stress stress (MPa)
σi equivalent stress from FEA (MPa)
σY yield stress (MPa)
σ(ti) true stress (MPa)
D(ti) the Prandtl damage operator (1)
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