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Abstract 

The article summarizes practical findings on area of elastic smooth bodies contact modeling in plane. Hertz contact theory is applied 

to calculate surface contact pressure and sub surface stress below center of contact. Detail graphical contour visualization of von Mises 

stress and principal shear stress magnitude and plane direction is modeled with FEM. The results show very complex material loading, 

which continuously changes it's states during roller element pass. 
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1. Introduction 

Bearings became one of the most important components 

of machines with rotating parts during the last century. 

They allow relative rotational motion of two parts with 

minimal energy loss. Due to they critical importance in 

reliability of machines, they are subject of research in area 

of fatigue and reliability prediction. This article is focused 

on methods of bearing race contact load modeling by 

means of analytical description and FEM approach that 

forms basis for further research. 

2. Bearing analysis 

2.1. Standards 

Current standards used for general evaluation and sizing 

of bearings provide very efficient tools for quick analysis 

and prediction of bearing life.  

The essential standard ČSN ISO 281 [1] provides 

users with very simple way of bearing life prediction that 

could be calculated with standard hand calculator. 

External bearing load, usualy combination of acting radial 

and axial force is recalculated to equivalent load  

-P based on bearing internal geometry. The bearing 

internal geometry and material information are involved 

in parameter called basic dynamical capacity -C and easy 

to remember parameter load – life exponent, that express 

relationship betwen life and applied load. The value varies 

with contact nature – point or line. [2] 

 𝐿10 = (
𝐶

𝑃
)
𝑛

 (1) 

This simple method is in the standard  

ČSN ISO 281 [1] extended to cover influences of 

lubrication type, lubricant cleaness, and even quality and 

development of lubrication layer. Mentioned factors are 

expressed by a1 and aiso values in the standard and modify 

the basic rating life and provide user with even more ac-

curate life estimation for given conditions.   

 𝐿𝑛𝑚 = 𝑎1𝑎𝐼𝑆𝑂 (
𝐶

𝑃
)
𝑛

 (2) 

Limits of this method are obvious. It does not allow 

detailed bearing load inputs and neither analysis involving 

bearing internal geometry. 

More accurate method is published in standard  

ISO / TS 16 281 [3] that uses a mathematical model of 

bearing including internal geometry. It can therefore pro-

vide engineer with much detailed information about inner 

load distribution. Unlike ČSN ISO 281 [1] that only co-

vers normal loading forces (radial and axial),  

ISO/TS 16281 [3] works also with tilting moment that is 

usualy introduced when kinematical limits of bearing are 

exceeded. It also works with parameters such as number 

of rolling elements, bearing inner clearance, 

manufacturing and tolerance class when it calculates 

bearing internal load distribution. 

 

Fig. 1. Roller element load distribution calculated according to 

ISO/TS 16 281. Loading is in negative z axis, direction 

Bearing life calculation is based on similar theory as in 

case of ISO 281:2007, but it is calculated with respect to 

actual inner load distribution. 
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Use of bearing calculation according to  

ISO/TS 16281 [3] requires its implementation in compu-

tational software. On the market, for example MESYS 

and KISSsoft are available. 

2.2. Advanced analysis concept 

The knowledge of bearing inner load distribution is a key 

to advanced analysis of material response. ISO/TS 16281 

[3] provides unique tools for detailed internal load 

analysis. The limits are in the evaluation that is based on 

Lundberg and Palmgren’s [4] theory where the stress field 

below contact is expressed by derived analytical 

equations. These are sufficient for engineering purposes, 

but limiting when advanced research is requested. 

 Possible way of advacement was conducted. Standard 

ISO/TS 16281 [3] was used for obtainig bearing inner 

load distribution and contact was modeled by means of 

FEM method, where appropriate model of contact was 

assembled and solved. This opens new possibilities of 

contact modeling, analysis and assessment. 

3. Analytical Contact Assessment 

3.1. Hertz line contact analytical sollution 

First theoretical explanation on elastic contact of two 

bodies was presented by Hertz at the end of 19th century. 

He made an assumption that in contact of two smooth 

bodies the contact region is a small with ellyptical shape. 

That allowed him separating stresses induced by contact 

from general stresses that arises inside of both contact 

bodies as response to load. [5] 

When bearing contacts are discussed there could be 

distinguished three types of Hertzian contacts, namely: 

(i) Elliptical contact – typical for ball bearings  

(ii) Line contact – typical for roller bearings.  

(iii) Point contact is not in bearing technology common, 

since all standard bearings have their races curved and 

therefore it results in elliptical contact area shape. 

 

Fig. 2. Line contact coordinate system 

Further investigation was limited to line contact of two 

cylindrical bodies. (that is based on general elliptical 

contact, but slightly simplified). Geometrical parameters 

are viewed on Fig. 2 and Fig. 3. The length of contact l  is 

considered to be infinite, loading is evaluated per unit of 

length and width of contact is denoted as 2a where a is 

considered to be a length of ellipse semiaxis. 

 

 

Fig. 3. Line contact description parameters 

Presented theory is based on following assumptions, that 

if held, it provides reasonable results:  

 Length of bodies is much greater than contact 

area width: l>>2a 

 Width of contact area is small comparing to radii 

of contact bodies: 2a<<Ri 

 Bodies are smooth, no friction is considered, μ=0 

 Deformation of bodies are small compared to its 

size 

 Elastic material behaviour is considered 

From derivation included in [5] there are established 

substitutions – see (3) that is a sum of relative curvatures 

of both non-conforming bodies. 

 
1

𝑅
=

1

𝑅1
+

1

𝑅2
 (3) 

An effective Young's modulus – see (4)  

 
1

𝐸*
=

1−𝜈1

𝐸1
+

1−𝜈2

𝐸2
 (4) 

It could be estimated that acting force per unit length  

will result in contact area with semiaxis width (5). 

 𝑎2 =
4𝐹𝑅

𝜋𝐸*
 (5) 

The pressure distribution that is assumed to have an 

elliptical shape, shall be calculated with respect to 

coordinate x according to Fig. 2 , Fig. 3 and (6). 

 𝑝(𝑥) =
2𝐹

𝜋𝑎2
(𝑎2 − 𝑥2)1 2⁄  (6) 

Maximal pressure p0 of line contact is then calculated 

according to (7). 

 𝑝0 =
2𝑃

𝜋𝑎
= √𝐹𝐸*

𝜋𝑅
 (7) 
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3.2. Plane strain assumption 

Contact of two bodies is treated as plane strain, loading is 

assumed to act in XZ plane and length of bodies is infinite. 

The load does not change with y coordinate. For such, we 

assume following conditions (8)-(10): 

 𝜀𝑦 = 𝛾𝑥𝑦 = 𝛾𝑦𝑧 = 0 (8) 

Out-of plane shear stress is not considered 

 𝜏𝑥𝑦 = 𝜏𝑦𝑧 = 0 (9) 

Even though we consider plane strain conditions, there 

still occurs a transverse stress component 

 𝜎𝑦 = 𝜈(𝜎𝑥 + 𝜎𝑧) (10) 

3.3. Subsurface stress development 

Surface contact stress induced by contact of both 

elastic bodies results in stress response in the material 

below surface. There were derived analytical equations 

describing the stress field [5]. Those if simplified for 

contact centre, result in following equations of principal 

stress development in XZ plane [6] 

𝜎1 = 𝜎𝑋 = −𝑝0 [(2 − (
𝑧2

𝑎2
+ 1)

−1

)√(
𝑧2

𝑎2
+ 1) − 2 |

𝑧

𝑎
|] (11) 

 𝜎2 = 𝜎𝑌 = −2𝑝0 [√(
𝑧2

𝑎2
+ 1) − |

𝑧

𝑎
|] (12) 

 𝜎3 = 𝜎𝑍 = −𝑝0 [√
𝑧2

𝑎2
+ 1]

−1

 (13) 

3.4. Stress evaluation 

Stress effect evaluation could be performed in the first 

place according to hypotheses allowing comparison 

multiaxial stress state to known material data obtained 

from uniaxial experimental measurements. 

3.5. Tresca Maximal shear stress 

Principal shear stress in XZ plane, often called as Tresca, 

predicts that the yield of material shall occur if maximal 

shear stress exceeds the value of maximal shear stress 

from uniaxial tensile test. Maximal shear stress in plane 

is thus calculated as half of difference between two 

principle stress components.  

 

 𝜏2 = 𝜏𝑋𝑍 = 𝜏𝑇𝑟𝑒𝑠𝑐𝑎 = |
𝜎1−𝜎3

2
| ≥

1

2
𝜎𝑌 (14) 

3.2.2 Von Mises criterion 

When employed criterion of distortional strain energy 

the von Mises’s equivalent stress would be calculated 

from principal stresses and first yield would in this 

material appear if strain distortional energy of multi-axial 

stress state exceeds the strain energy at yield of uniaxial 

tensile test. 

 σVM = √
1

2
[(σ1 − σ2)

2 + (σ1 − σ3)
2 + (σ2 − σ3)

2] ≥ 𝜎𝑌 (15) 

And thus it could be proven, that shear stress known as 

octahedral would be clculated: 

 𝜏𝑂𝑐𝑡 =
1

3
√[(σ1 − σ2)

2 + (σ1 − σ3)
2 + (σ2 − σ3)

2] (16) 

Both criterion are widely used for stress assessment of 

multi-axial stress states and both very well fits 

experimental data for most ductile materials. The 

difference between either is that Tresa predicts the 

material yield in slightly lower stresses compared to von 

Mises octahedral stress. [7] 

3.5.1. Quick stress estimation 

Substituting (11) – (13) to (14) and (15) it is possible to 

obtain values of maximal shear stress and von Mises 

stress togeather with magnitude of peaks position. These 

easy to remember values are summarized in Table 2. 

Table 2. Quick stress estimation.[2] 

Criterium Estimation 

Max. shear stress value 0.3 ∙ 𝑝0 

Max. shear stress depth 0.78 ∙ 𝑎 

Von Mises stress max. value 0.56 ∙ 𝑝0 

Max. Von Mises stress depth 0.7 ∙ 𝑎 

4. FEM contact modelling 

4.1. Assembly 

The problem consists of two planar bodies – inner race 

and roller forced to mutual contact by applied boundary 

conditions. It is assumed quasi-static load case, so 

dynamic and cyclic loading is not considered. Applied 

boundary conditions are viewed on Fig. 4 The geometry 

of roller is constrained to Reference Point (RP1) where 

only motion in vertical axis is allowed. Inner diameter of 

race is constrained to second Reference Point (RP2) that 

all  degrees of freedom are locked providing the inner race 

with absolutely stiff support simulating a shaft. 

Geometry of bearing NU 206 was obtained from 

database of KISSsoft software and important values are 

viewed in table below 

Table 3. Bearing geometry information. 

 d D B Di Lwe Dw 

NU 206 30 62 15 37,5 10 9 
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Fig. 4. FEM model in Abaqus. Constrained Degrees of 

freedom listed next to Reference point designation 

4.2. Material 

For both bodies there was used materials with elastic 

properties according standard bearing steel 100Cr6 Q+T. 

No plastic deformation was for this analysis considered, 

since it will be subject of further research. 

Table 4. Bearing material typical propetries. [8] 

Material E v σy HRC 

100Cr6 2.1e5 0.3 2000 60 

4.3. Contact propetries 

Contact faces were assigned to be in mutual contact. 

Master surface was assigned to roller and slave to the race. 

Advanced Surface-to-Surface discretization was used. 

Due to very limited amount of sliding between both 

bodies small sliding contact formulation could be used 

[9]. The contact between both bodies was considered as 

frictionless in tangential direction and hard contact in 

normal direction was used. 

4.4. Mesh 

The problem is modelled as planar thus planar quad 

elements with mid-side nodes and reduced integration 

scheme – Abaqus designation: CPE8R was used. The 

element belongs to Plane Strain Element family and is 

purposed for general contact application where no 

complex changing conditions are assumed [9]. 

 

 

Fig. 5. Detail of mesh in area of contact 

As viewed in Fig. 5 density of mesh is increasing in 

area of contact and becomes coarse in peripheral areas. 

The mesh of race is intended to be finer than mesh of 

roller because development of subsurface stress will in 

that area be inspected.  

Global element size was assigned to 0.1 mm and the 

mesh is generated as free, consisting of quad elements. 

Contact line and region in neighbourhood of contact on 

the other side are meshed with structured mesh and 

element size 0.005 mm that would describe the region 

with enough detail to catch the stress field acurately Very 

fast transition of element size viewed on picture above 

does not affect the solution, because of main interest is 

region in the centre of fine meshed area. Fast transition 

only might cause instability of numerical solution. 

5. Results 

5.1. Hertz Contact Pressure Distribution 

Comparison of contact stress solutions is viewed  

in Fig. 6. FEM solution accurately follows analytical 

stress development according to (6) except minor Hertz 

contact pressure solution error at peripherals of contact –

grey dotted line in Fig. 6. Hertz contact pressure analytical 

and FEM solution  comparison. Contact pressure 

1620MPa. This error (computed by Abaqus and having 

same unit as parental [MPa], reaches up to 100 MPa) 

arises due to low contact pressure at peripherals and 

discretization of contact by elements. It will not influence 

main solution results. 

 

Fig. 6. Hertz contact pressure analytical and FEM solution  

comparison. Contact pressure 1620MPa 

5.2. Sub surface stress development 

Analytical solution provides equations for obtaining 

development of principal stresses below centre of contact 

– (11) – (13). These are used to calculate principal shear 

stress according to Tresca (14) that is thought to be 

responsible for fatigue damage resulting from local 

plasticity below surface [2] and therefore is generally [2], 

[10] used for evaluation of stress effect on the structure 

Development of principal stresses (Sx, Sz Sxz) below 

centre of contact is presented in Fig. 7. Maximal value is 

τmax = 503,9 N/mm2 is reached in depth z = 0,079 mm 
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below contact surface. FEM solution accurately follows 

analytical. 

Comparing curves of Tresca and von Mises stress 

respecively in Fig. 7, we can see that there is visible 

difference in area close to contact surface. Difference is 

driven by out-of plane stress component that is involved 

in von Mises stress calculation and missing in in-plane 

Tresca shear stress solution. 

 

Fig. 7. Sub-surface Maximal Shear, Octahedral and von Mises 

Stress contours for contact pressure 1620 Mpa 

Tresca Shear stress conoutrs are viewed in Fig. 8.  Where 

is clear evidence of maximal stress value below surface. 

The differences between lower and upper stress 

„structures“ is only due to different mesh quality for roller 

and race. 

 

Fig. 8. Sub-surface Maximal Shear, Octahedral and von Mises 

Stress contours for contact pressure 1620 MPa 

5.3. Principal stress and strain planes 
direction 

When rolling element passes observed virtual point  

on contact surface, it could be viewed following 

development of maximal shear stress magnitude and 

angle of its acting plane in depth z = 0.08mm below 

surface Fig. 9. It is where maximal shear stress reaches its 

maximal values as specified in Table 2. It is obvious in 

that the angle of principal shear stress plane flips rapidly 

below the contact centre point. Principal  

 

Fig. 9. Direction of Maximal Shear Stress plane, Magnitude of 

maximal shear stress and inplane principal stresses at depth 

z=0,08mm below contact of surface 

Better overview of maximal shear stress plane 

direction can provide us Fig. 10. Very fast direction 

change below contact is aparent through the depth of 

material. 

 

Fig. 10. Max. shear stress plane directions. Visualisation 

limited to +-45° 

Fig. 11 shows direction and relative sizes of principal 

in-plane strain components and thus material 

deformation. The deformation is almost exclusively 

multi-directional. In vertical direction the there is 

compressive loading of material, but in horizontal 

direction, the material is mostly loaded in tension. There 

is a small region, just below the surface, where even 

material loading parallel to race is also compressive. 

 

Fig. 11. In-Plane principal strain tensor visualization 
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5.4. Known limitations 

Proposed solution was limited to elastic material 

behaviour and smooth frictionless surface contact, that 

can in real working conditions be reached only under 

certain circumstances. Presented Hertz contact solution, 

in connection with bearing technology, is only valid if the 

lubrication layer between both contact surfaces is fully 

developed into Elastohydrodynamic (EHL) [11] state that 

prevents surface roughness asperities contact.  

The elastic sollution can influence and predict material 

sub/surface stress development, mainly in area  

of maximal shear stress or von Mises stress respectively, 

where values of material yield could be exceeded and 

some plastization can occur. 

Solution also neglect the stress at the ends of roller, 

where spation attitude should be applied. 

6. Discussion 

Hertz analytical sollution provides very efficient tools and 

method to quick analysis of sub-surface stress 

development, although FEM allow performing deep 

analysis, that provides better understanding of problem.  

Following results were obtained. 

Maximal shear stress Fig. 7 in centre of contact is 

located below contact surface in depth, that according to 

Hertz solution could be easily estimated. The value was 

verified by FEM. Shear stress contours are viewed  

in Fig. 8. This max shear stress is driven by difference of 

in-plane principal stresses. 

Maximal shear stress acting plane is near centre of 

contact and changes rapidly direction from +45° to -45° 

during roller pass. It is graphically represented on Fig. 9, 

where development of in-plane principal stresses in depth 

0.08mm below contact surface is viewed. During the 

roller pass, every point of material is stressed un propor-

tionally in all three axes. Good overview of the material 

loading complexity is in Fig. 11. Where is the visualiza-

tion of principal strain tensor. There could be distin-

guished a small region below the contact where material 

loading is only compressive and thus it should have pro-

tective effect on material. 

Peak of von Mises stress is located slightly deeper be-

low contact surface Fig. 7. Because of out of plane stress 

solution influence, there is obvious surface stress magni-

tude, which although has compressive character. 

Symbols 

a  Contact half-width (mm) 

a1  Bearing life modification factor - reliability  

aiso Bearing life modification factor - lubrication 

B  Bearing width (mm) 

C  Dynamic capacity (N) 

d  Bearing hole diameter (mm) 

D  External bearing diameter (mm)  

Di  Bearing Inner race diameter (mm) 

Dw Roller diameter (mm) 

Ei  Elasticity modulus (i=1 or 2) (N/mm2) 

E*  Elasticity modulus substitution (N/mm2) 

F  Load acting on contact body (N) 

L10 Basic bearing rating life (cycles) 

Lwe Roller active length (mm) 

l  Contact length (mm) 

n  Bearing Load-Life exponent  

P  Equivalent bearing load (N) 

p0  Maximal contact pressure 

p(x) Contact load along x axis (MPa) 

Ri  Contact body radius (i=1 or 2) (mm) 

x  Coordinate on X axis (mm) 

z  Coordinate on Z axis (mm) 

μ  Friction coefficient 

ν  Poissons constant 

π  Ludolf’s number (3,141592654) 

εi  Strain (i=x, y, z) 

γii  Strain angle (i=x, y, z) 

σi  Normal stress (i=x, y, z for orthogonal, i=1,2,3 

for principal stresses) 

τii  Shear stress (i=x, y, z for orthogonal, i=1,2,3 for 

principal stresses) 

σY  Material Yield stress 

σVM Stress according to von Mises criterion 

τTresca Shear stress according to Tresca 

τOct  Octahedral Shear stress 
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