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Abstract. The influence of different types of the vegetative barrier near a highway on dustiness
was studied. Transport and dispersion of pollutants PM10 emitted from the highway was
numerically simulated. Mathematical model was based on the Navier-Stokes equations for
turbulent fluid flow in Boussinesq approximation. The AUSM-MUSCL scheme in finite volume
formulation on structured orthogonal grid was used. The influence of the shape of the barrier
and of its obstructing properties on the concentration of pollutants was studied.

1. Introduction
The pollution in the Atmospheric Boundary Layer (ABL) is increasing these days and its different
effects on human life are more investigated. The numerical modelling can help us to predict
the transmission of the pollution and to understand its behaviour. Although there are a lot of
models for concentration, the core of this problem lies in a accurate fluid flow modelling. The
dangerous areas can be easily identified from exact simulation of the velocity field and density
distribution. Examined problems cover the research field of micrometeorology [1].

One of the problem is the increasing of car traffic on highways. The concentration of dust
produced (or swirled) by the traffic is increasing as well. Therefore areas around these highways
are more threatened with the dust. Some examples of increased concentration effects are the
effect on human health (respiratory problems), the effects affecting the environment and the
effect on agriculture. Although some solid barriers are installed near highway, it shows that
there are not quite effective to prevent these effects.

The simple mathematical model of incompressible stratified fluid flow based on Navier-Stokes
equations was used in 2D. The Blackadar algebraic turbulent model [2] was added and its
effects were observed. The vegetative barrier was study in this paper, especially there effect on
simulated fluid flow were investigated. The barrier was simulated as a rectangle with different
aerodynamic obstructing force.

2. Mathematical model
This section describes in detail development and simplification of the mathematical model for
incompressible fluid flow with variable density. Necessary assumptions and approximations are
introduced



2.1. Simple incompressible model
The air flow in ABL is described by RANS (Reynolds Averaged Navier-Stokes) equations for the
viscous, incompressible, turbulent and stratified flow with variable density (in general). The heat
transfer is not considered. The system of equations is simplified with Boussinesq approximation,
in 2D it is written:
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where ui (i ∈ {1, 2}) are velocity components, ρ resp. p are perturbations of density resp.
pressure, ρ0 is background density and Ti is the aerodynamic resistance of the barrier. The
viscosity was composed from the molecular kinematic viscosity and the turbulent viscosity
ν = νm + νT .

2.2. Turbulence model
The turbulent viscosity was computed from Blackadar algebraic turbulent model (see [3], [2]).

νT = l2
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where G is function of Richardson number Ri

G = (1 + 3Ri)−2 for Ri > 0

G = (1− 3Ri)2 for Ri ≤ 0.
(3)

Mixing length l is according to Blackadar computed as:
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where κ is von Karman constant, f marks Coriolis parameter considered as a constant in
computed domain: f = 1.1 · 10−4 rad.s−1, z0 is surface roughness parameter (choose as tenth of
barrier height h), l∞ means mixing length for x2 → ∞ and Vg is geostrofic velocity on the top
of boundary domain.

2.3. Vegetation model
The vegetative barrier was modelled by adding volume force T , which simulates the aerodynamic
resistance caused by the vegetation:

Ti = rh|U |ui, (5)

here |U | is the velocity magnitude and rh is an obstructing coefficient of the vegetative barrier.
The profile for the coefficient was chosen as rhombus, which simulate the distribution of the tree
mass and its ability to obstruct the flow:

rh(z) =

{ r x2/h
0.75 ∀(x2/h); 0 ≤ x2/h ≤ 0.75

r 1−x2/h
1−0.75 ∀(x2/h); 0.75 ≤ x2/h ≤ 1.0,

(6)

where r ∈ 〈0; 1〉 is obstructing constant, which characterizes the type of vegetation (0 means no
barrier). Different values of these constants have been tested.



2.4. Equation for dust concentration
The contaminant is a non-hygroscopic, primary emitted dust which can be considered as passive
scalar in the flow field. The transport of concentration C is described by the advection equation:
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where Z is source term placed on the highway. The diffusion (in general turbulent) of dust
concentration is neglected.

Using second equation of system (1) and some assumptions for Boussinesq approximation the
last equation can be rewriten as:
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When neutral stratification is assumed, the term with ∂ρ0
∂x2

= 0.

2.5. Vector form of equations
The whole system of governing equations can be rewritten in vector 2D conservative form:

PW,t +H(W )(i)
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where the W = [p, ρ, u1, u2, C]T is vector of unknowns, matrix P = diag[0, 1, 1, 1, 1]T , symbol
(.),xi or (.),t denotes derivative, matrices H contain the inviscid fluxes:
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matrices R are the viscous fluxes

R(1) = [0, 0, u1,x1 , u2,x1 , 0]T

R(2) = [0, 0, u1,x2 , u2,x2 , 0]T (11)

and vector Fext is the source term:
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3. Numerical approximation
The high resolution finite volume method was used. Discretization was done by the methods of
lines.

3.1. Spatial discretization
The AUSM scheme was used for space discretization of inviscid fluxes:∫
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where quantities p and ρ on the cell face are approximated by the central formula from
neighbouring cells. Velocities on the cell face are computed using MUSCL reconstruction
according to van Leer [4]:
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with the Hemker-Koren slope limiter function:
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a+ = uP+1 − uP ; a− = uL+1 − uL,
b+ = uP − uP−1; b− = uL − uL−1. (17)

The numbers P,L ∈ Z denote index values of the velocities (e.g. face between cells (k) and
(k+ 1) i.e P = k+ 1 (index by u+) a L = k (index by u−)). The concentration is approximated
by simple up-stream method.

Since the pressure is approximated by central difference, the scheme has to be stabilised by
the artificial pressure diffusion introduced in [5]. The discrete version of the additional flux i.e.
for face between cells (k) and (k + 1) is given by:

H(p) = [
pk+1 − pk

βp
, 0, 0, 0, 0]T , (18)

where βp = Umax+ 2ν
∆ , ∆ is the step size of grid. The viscous fluxes are discretized in the central

way on dual (diamond type) mesh. This scheme is of the second order in space. See details in
[6].

3.2. Time integration
After the space discretization the time derivative is approximated by the robust second order
BDF formula. The time step ∆t can be chosen according to the problem. If we define the
reziduum as:

Rez(Wn+1) := P
3Wn+1 − 4Wn +Wn−1

2∆t
+

+H(Wn+1) +R(Wn+1)− Fext(Wn+1), (19)

then the following system of equations has to be rewritten for the time step n+ 1:

Rez(Wn+1) = 0. (20)

This equation is solved by principle of artificial compressibility method in an artificial (dual)
time τ . The dual time derivative of pressure is added to the continuity equation. The stationary
solution of the following system is sought:

P̃W,τ + Rez(Wn+1) = 0, (21)

where P̃ = [1, 1, 1, 1]T . The system of ODEs is solved by an explicit 3-stage Runge-Kutta
method.



4. Validation
The Validation of the model was done on case solved by Bodnar [3]. There were study lee waves
generates over the hill. The wavelength of lee waves was compared to the theoretical values and
the profiles of vertical velocity on sectional line were compared to the ones within the original
article, for validation of the numerical model results.

4.1. Wavelength
The theoretical values of wavelength were computed from the Brunt-Vaisala frequency for each
stratification. Than the wavelength was measured by two methods: the distances of the wave
maxima were determined and the wavelengths in section line perpendicular to the direction of
waves propagation were plotted. The results are shown in Table 1. Considering the errors in
measurement (approx. 1 m), the values are in a good agreement.

Table 1. The comparison of theoretical and measured values of wavelength
Theory Measure

Distance Section line

|g|
[

m
s2

]
wavelength [m]

5 31 33 33
10 22 23 17
20 15 17 12
50 10 10 7

4.2. Vertical velocity profile
The values of vertical velocity were plotted along the sectional line started in the middle of the
hill and the inclination was 45 degrees. The plotting was done for each stratification and it was
compared to vertical velocities profile from [3]. The amplitudes and the shape of results in Fig. 1
are similar to the original ones in Fig. 2.

Figure 1. Vertical velocities
profiles
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Fig. 5. Vertical velocity plots for different values of stratification.
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Figure 2. Vertical velocities
profile from [3]

The lee waves are observed in both figures, there are more waves for higher gravity acceleration
in the original figure. It can be caused by a little bit different time of evaluation. Even if there
is declared to have the final (stationary) flow in the original figure, the flow is changing a little
bit all time and the waves are slightly moving.



5. The numerical experiment and setup
The computational domain was 300 × 150 m large, the highway is situated in position
x1 ∈ 〈20, 45〉m. The vegetative barrier of height h = 15 m is located in position x1 ∈ 〈50, 80〉m.
Dust source was situated to the center of the highway x1 = 32 m. The source term was set to
Z/ρ0 = 1 for all time.

The vertical gradient of the density was ∂ρ0
∂x2

= 0 as was mentioned before. It matches to

homogeneous stratification (can be neutral stratification if the assumption of negligible heat
transfer is satisfied). Some other parameters were: g = −10 m

s2
, kinematic viscosity of air

ν = 10−5 m2

s .
The structured net consist of 120 × 300 orthogonal cells. Step in x-direction is equidistant.

The vertical step is till height 50 m exponentially diluted, with expansion factor 1.038615706,
above 50 m is equidistant with 2 m step. The smallest step is 0.1464334293 m high in x2-direction
(designates in experiments for clarity y-direction).

5.1. Boundary conditions
The boundary conditions were realised by ghost cells method. The values of the unknowns were
calculated through the linear extrapolation to obtain the right values on the boundaries.
Inlet: The horizontal velocity component was prescribed by logaritmic wind profile near surface
u1 = Umax ln(x2−z0z0

), over 20 m high it was constant u1 = Umax = 5 m
s . The homogeneous

Dirichlet condition was prescribe for other variables, only the pressure was extrapolated.
Outlet: Homogeneous Neumann condition was prescribed for all variables, only the pressure
perturbation was set to 0 Pa.
Top: The perturbation of pressure and density were extrapolated, the velocity component were
the same as on inlet top boundary (Dirichlet condition)
Bottom: The perturbation of pressure was extrapolated. The no-slip (homogeneous Dirichlet)
condition for velocity components was prescribed and the homogeneous Neumann condition for
the density (its perturbation) was given.

6. Results
Three effect of the flow were study. First experiment compared the simple flow (without
turbulent model) with turbulent flow. Second one observed the influence of the obstructing
constant on the horizontal velocity in 10 m high and the third one study the influence of the
obstructing constant on the concentration of dust behind the vegetative barrier.

6.1. The effect of the turbulence model
Two different types of the flow were computed for the obstructing constant r = 0.3. First one
without turbulent model (νT was set to 0) and the second one with it. The results is shown in
Figs. 8 and 4. The flow without turbulent model is unsteady, the vortex street was regularly
created behind the barrier. Unlike the flow with turbulent model, which is steady, because all
vortexes are damped by the turbulent viscosity.

6.2. The influence on the flow
Several situations were computed for different obstructing constants. The horizontal components
of velocities were plotted together on sectional line for each situations. The result shows Fig. 5.
The breaking effect of the barrier is evident - for higher r is the effect bigger.

The red line shows the situation, when r = 0.0, it means the case without any barrier.
No breaking effect appeared for this line. However the current at the same high is slowing.
The explanation can be in grown boundary layer, turbulent viscosity draw kinetic energy and



Figure 3. Vertical velocity and
streamlines for νT = 0

Figure 4. Vertical velocity and
streamlines with turbulent model

the vertical component of velocity is decreasing. For the grow of boundary layer see figure in
appendix.

The rapid increase away from the barrier (behind x = 90 m) is caused probably by the higher
velocity of fluid in lower levels. These levels were not slows so well, because of the obstructing
profile, which is lower in lower levels (see Eq. (6)).

Figure 5. Vertical velocities on sectional line in 10 m height

6.3. The influence on the concentration
The last experiment was pointed on concentration. The concentration were plotted on sectional
line placed in points x = 120 and x = 150 m for the same situations as in previous subsection.
The results shows Figs. 6 and 7. The influence of r is apparent. For higher r the maximum of
concentration is in higher levels. This should be promising for the human health, but this effect
can be weakened with turbulent diffusivity (neglected in this model), with other stratification
or with dust sedimentation (also neglected in this model).



Figure 6. Concentrations for different r in x = 120 m

Figure 7. Concentrations for different r in x = 120 m

7. Conclusions
It manage to show influence of vegetative barrier near highway on the flow and the dust
concentration. The effect are visible and interesting even for a simple model. However there is
a lot of space, how can be this model improved. For example better validation will be needed, if
the measurement on highway is done. Turbulent diffusivity of concentration can be added, the
dust sedimentation can be added etc.



Appendix

Figure 8. Horizontal velocity field
for r = 0.3
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