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Abstract  
A working viscous-inviscid interaction (VII) for boundary layer calculation does not only 
enhance the credibility and precision of results but also plays a crucial role in existence and 
calculation of solution of a two equation boundary layer model on geometry with transition and 
weak separation regions. The paper explains the importance of solving the boundary layer 
integral equations simultaneously or quasi-simultaneously with inviscid flow. A short overview 
of interaction methods is followed by some examples of the effects of VII on solutions. The 
overall goal of the presented work is to research possible ways of implementing the boundary 
layer model for different 2D and 3D panel methods being developed by the author.     
 
Key words 
Boundary layer, Viscous-inviscid interaction, integral method, transition, panel methods 
 

1. Introduction 
In search of the most feasible approach to adding viscous effects to author’s expanding range 
of design tools based on panel methods and vortex lattice theory the integral two equation  
boundary layer model has been selected. The integral equation approach doesn’t require 
boundary layer discretization and seems to be a logical complement to panel methods that are 
BEM (boundary element methods) by nature. One of the well-established panel codes XFOIL 
by M. Drela [1] uses integral two-equation method. After thorough research of literature and 
implementation of the calculations it becomes clear that the viscous-inviscid interaction plays 
a key role in the integral two-equation model of boundary layer especially in cases with 
transition and weak separation regions.  
The simultaneous solution of boundary layer equations together with potential flow equations 
employed in the XFOIL code is a very complex and robust method with the disadvantage of 
placing severe constraints on panel code solver structure. Since the goal of the current study 
was to develop a „plug-in“ boundary layer calculation usable in several different applications 
including 2D airfoil analysis and cascade analysis, alternative approaches to treating viscous-
inviscid interaction had to be explored.  
     

2. Boundary layer formulation 

2.1 Boundary layer integral equation parameters 
For solving integral equations, only the wall surface (boundary) needs to be discretized by 
i = 1÷N  stations with coordinates ��. At each station, several boundary layer parameters together 
with chosen velocity profile family are required to describe the boundary layer. Among the 
parameters are: displacement thickness �∗, momentum thickness �, momentum thickness 
Reynolds number ���, kinetic energy thickness �∗, shape parameters H and H* , skin friction 



coefficient Cf, dissipation coefficient CD and shear stress coefficient Cτ. The definition of these 
parameters is below. All integrals are across the boundary layer in η-direction perpendicular to 
surface.   
 
 �∗ = 
 �1 − ������ � �� (1.) 

 
 � = 
 ������ �1 − ������ � �� (2.) 

 
 ��� = �����  (3.) 

 
 �∗ = 
 ������ �1 − �������� � �� (4.) 

 
 � = �∗�  ;    �∗ = �∗�  (5.) 

 
 �� = 2������ (6.) 

 
 �� = 1��� 
 � !�!� �� (7.) 

 
 �" = �#$%����  (8.) 

 
 

2.2 Boundary equations 
The differential boundary layer equations are derived from full Navier-Stokes equations by 
using several simplifications and assumptions, such as constant pressure across the viscous 
layer and steady flow [2]:   
 
 �% !�%!� + �' !�%!� = − 1� �(�� + ) !��%!��  (9.) 

 !�%!� + !�'!� = 0 
(10.) 

 
Among the first to derive and use integral equations were Kármán and Pohlhausen. Some 
methods use only the integral momentum equation, where the shape parameter is tied to the 
local pressure gradient. A representative example of such one-equation method is that of 
Thwaites[8]. As described in a paper by Drela and Giles [3] for separated flows a two-equation 
model is needed, so a modified two equation Green’s entrainment method was used for 
turbulent region in their ISES code. For laminar region a similar two-equation model only with 
different closure relation has been proposed for ISES.  



 This paper will be using the boundary layer formulation described in [3] only with some minor 
modifications, such as leaving out compressibility related terms. First equation is the integral 
momentum equation, the second equation is the kinetic energy shape parameter equation:  
 
 ���� + �2 + �� ���

����� = ��2  (11.) 

     
 � ��∗�� + �∗�1 − �� ���

����� = 2�� − �∗ ��2  (12.) 

 
The primary unknowns are H and θ. The edge velocity ue generally depends on the actual surface 
geometry and displacement thickness over the entire surface. It will be further investigated, but 
for current notation ue is assumed to be a function of local H and θ: 
 
 �� = ����, �, ��,-� (13.) 

 
The remaining parameters are tied by a series of closure relations that differ for laminar and 
turbulent boundary layer.  
 
 �∗ = �∗��, ��,    �� = ����, ��,    �/ = �/��, �� (14.) 

 

2.3 Laminar closure 
The following closure relations based on the Falkner-Skan profile family are valid in the 
laminar region:  
 �∗ = 1.515 + 0.076 �4 − ����   ,      � ≤ 4 

 �∗ = 1.515 + 0.040 �� − 4���   ,      � > 4 

      
(15.) 

��� ��2 = −0.067 + 0.01977 �7.4 − ���� − 1 ,       � ≤ 7.4 

  ��� ��2 = −0.067 + 0.022 81 − 1.4� − 69� ,       � > 7.4 (16.) 

 ��� 2�/�∗ = 0.207 + 0.00205�4 − ��:.:,       � ≤ 4 

 ��� 2�/�∗ = 0.207 − 0.003 �� − 4��1 + 0.02�� − 4�� ,       � > 4 (17.) 

 
For transition prediction the e^9 method first described by Smith and Gaberoni and also used 
in the ISES code [3] is employed. The transition theory is based on observing the spatial-
amplification of small velocity perturbation at different frequencies. The key relation is the Orr-
Sommerfeld equation describing the eigen modes and eigen frequencies of velocity oscillation 
in a viscous parallel stream [2]. The e^9 method assumes that the transition occurs when the 
most unstable wave has grown by a factor of e9=8103. The exponent 9 is valid for relatively 
turbulent flow usually found in wind tunnels [1]. Higher exponents should be used in strongly 
laminar incoming flows, for smooth surfaces and low vibrations – scenarios that delay 



transition. In case of incoming flow with higher turbulence intensities and when vibrations or 
rough surface is a factor, lower exponents should be experimented with.     
An auxiliary transition equation for amplification ratio ñ is solved at each laminar station: 
 
 
  

�ñ�� = �ñ����
= + 12 ℓ 1� (18.) 

Where: 
 �ñ���� = 0.01?@2.4� − 3.7 + 2.5ABCh�1.5� − 4.65�E� + 0.25 (19.) 

 
 ℓ = 6.54� − 14.07��  (20.) 

 
 = = �0.058 �� − 4��� − 1 − 0.068� 1ℓ (21.) 

 
When the amplification ratio at some point i reaches a critical value (ñi ≥ 9) the calculation 
continues with turbulent closure equations and point i is assumed the transition point.  
 
 

2.4 Turbulent closure 
The following equations are used for the turbulent closure [3]: 
 �∗ = 1.505 + 4��� + �0.165 − 1.6?���� ��G − ��� ,       � < �G 

�∗ = 1.505 + 4��� + �� − �G�� I0.04� + 0.007JKL�����M� − �G + 4/JKL�����O�P ,   � > �G 

 

�G = Q  4                  (RK ��� < 400 
3 + 400���     (RK ��� > 400  

 

(22.) 

 �� = 0.3�ST.  U@JKLTG�����EST.VWSG. TU + 0.00011 XABCℎ 84 − �0.8759 − 1Z (23.) 

 
 �� = ��2 [\ + �"�1 − [\� (24.) 

 
 [\ = �∗2 81 − 43 � − 1� 9 (25.) 

 
The system of equations must be closed by one more relation for �". Green et. al. [5] proposed 
a method where the actual shear stress coefficient is calculated from its equilibrium value �" ]^  
and its spatial rate of change: 
 � _3.15 + � + 1.72� − 1`�"

��"�� = 4.2M�" ]^T/� − �" T/�O (26.) 



Where: 
 �" ]^ = �∗ 0.0151 − [\

�� − 1� �  (27.) 

 
 

3. Boundary layer solution method 
In laminar region, only two equations (11,12) are solved as a system of PDEs using Newton-
Raphson iteration scheme. The amplification ratio is calculated after each iteration. In turbulent 
region, the additional equation for calculating shear stress must be calculated together with the 
integral equations. The equations (11,12,26) can be rewritten for Newton iteration method using 
central differencing (i-1/2):  
 
 aT = �� − ��ST�� − ��ST + M2 + ��ST/�O ��ST/��� �ST/�

�� � − �� �ST�� − ��ST − �� �ST/�2 = 0 (28.) 

 
 a� = ��ST/� 8��∗�� 9�ST/�

�� − ��ST�� − ��ST + ��ST/�∗ M1 − ��ST/�O ��ST/��� �ST/�
�� � − �� �ST�� − ��ST− 2�� �ST/� + ��ST�∗ �� �ST/�2 = 0 

(29.) 

 
 a = 2��ST/� 83.15 + ��ST/� + 1.72��ST/� − 19

�"  �ST/�T/� �" �T/� − �" �STT/��� − ��ST− 4.2 _�" ]^ �ST/�T/� − �" �ST/�T/� ` = 0 

(30.) 

 
The calculation is marching downstream and the solution at each station is obtained in several 
iteration steps: 
 
 

b
ccc
cd

!aT!��
!aT!��

!aT!�" �T/�!a�!��
!a�!��

!a�!�" �T/�!a !��
!a !��

!a !�" �T/�e
fff
fg h ∆��∆��∆�" �T/�j = h−aT−a�−a j 

  

(31.) 

 �� k]l = ∆�� + �� mn�;   �� k]l = ∆�� + �� mn�;   �" � k]lT/� = ∆�" �T/� + �" � mn�T/�    (32.) 
 
The partial derivatives ∂f1, ∂f2 and (in turbulent region) ∂f3 are rather complex and will not be 
presented here.  
 
 
 
 
 



4. Viscous – inviscid interaction methods 

4.1 Selected 2D panel method for boundary layer implementation 
The boundary layer will be implemented into a simple 2D panel code for single airfoil analysis. 
It is expected that the findings and conclusions made using this setup are valid for other panel 
codes, such as 2D cascade panel method.  

As a first step, inviscid solution must be obtained using the airfoil geometry and 2D 
panel method. The selected panel method uses a stream function formulation and linear vortex 
strength distribution. The surface is discretized by N points from the upper trailing edge across 
the leading edge to the lower trailing edge. The boundary condition is in form of a constant 
stream function on the surface. In practice the boundary condition is evaluated in nodal points, 
which form the panel edges. Unknowns are the vortex strengths pq in each nodal point and the 
surface value of stream function ΨG. For each nodal point, a linear equation can be formulated 
from the boundary condition [1]: 

 
 				st�qpq

k

quT
& �%vw�  �'vx� ΨG 	 0,				1 5 y 5 z (33.) 

 
To complete the system of N+1 equations, Kutta condition is imposed on the trailing edge: 
 
 pT & pk 	 0 (34.) 

 
One of the benefits of the above formulation is the fact that surface velocity at each nodal point 
is equal to the vortex strength (�� 	 {pq).  
The boundary model described earlier is in fact a 1D model not taking into account the surface 
curvature. Its application to the airfoil surface is shown in figure 1. 
 

 
Fig. 1. Transformation from 2D boundary layer into 1D flat plate boundary layer problem 

 

4.2 Viscous-inviscid interaction 
The main idea behind using potential flow solver for viscous flow is in dividing the flow field 
into inviscid region and viscous boundary layer (see fig. 2, top). Since the flow in the boundary 
layer is slower due to shear stress, this must be somehow taken into account by the potential 
solver. Shifting the solid wall outward in the normal direction to the wall using the displacement 
thickness value is one generally accepted method (see fig. 2, bottom). Other methods use wall 
transpiration techniques, where the boundary layer thickness is simulated by source 
singularities placed along the walls with a prescribed source strengths based on boundary layer 
thickness. The disadvantage of the second option is the fact that severe modifications must be 



made to the flow solver if it does not use source panels, so the choice of the described method 
is the wall displacement technique.  

 
Fig. 2. Solution of the boundary layer problem using displacement of the solid surface by the 

displacement thickness value δ*. 
 
The boundary layer edge velocity ue at the border between viscous and inviscid region is taken 
to be identical to the surface velocity of inviscid solution using the modified geometry. 
The relatively complex calculation of boundary layer equations in our case using downstream 
marching must therefore share  δ* and ue with the potential flow solver, which is solved at once 
using linear system of equations. The sharing of displacement thickness δ* and edge velocity ue 
values is called viscous-inviscid interaction or also boundary layer coupling.  

4.3 Methods of viscous-inviscid interaction 
The simplest method of boundary layer coupling is no interaction at all. First the edge velocity 
is calculated using panel method and then the boundary layer is solved with the prescribed edge 
velocity as a constant. If the thickness and its variations are very small, this method was 
expected to give reasonable results.  
For true viscous-inviscid interaction methods Veldman [6] suggests the following types 
arranged by complexity: 
 

• Direct method: Intuitive technique where the potential flow solver calculates edge 
velocity, the boundary layer solver calculates the displacement thickness, the geometry 
is changed to account for the BL thickness and the whole process is repeated in several 
iteration steps.  

• Inverse method: The same procedure as with direct method is followed with the only 
difference that the potential solver is modified to inverse mode where it calculates 
geometry (displacement thickness), whereas the boundary layer solves for edge 
velocity, based on given δ* distribution. 

• Quasi-simultaneous method: A simplified relation between δ* and ue is used together 
with the boundary equations. Several iteration loops with subsequent BL and potential 
flow calculations are still needed, the main difference with respect to the direct method 



is the fact that both  δ* and ue are variables, which brings some important benefits as will 
be described in section 4.4.  

• Full simultaneous method: The boundary layer equations are solved together with 
potential flow in one system of equations. The wall transpiration technique is beneficial 
in this case. XFOIL [1] uses such layout. 

4.4 Strong interaction, separation and Goldstein singularity 
In case of an attached laminar flow, the boundary layer grows gradually in thickness which 
presents a weak interaction problem. When the flow approaches separation, traditional integral 
methods face difficulties in producing valid solution as was first described by Goldstein in 1948 
[7]. The Goldstein singularity refers to the singularity of solution near separation point at the 
trailing edge of the airfoil using traditional one-equation downstream marching boundary layer 
algorithms.  
The issues with singularity are faced generally whenever there is strong interaction between the 
boundary layer and potential flow. This includes laminar boundary layer separation (usually 
followed by transition and reattachment - laminar bubbles), transition and trailing edge 
separation. Full laminar or turbulent separation without reattachment can be classified also as a 
strong interaction, but cannot be handled by the presented boundary layer theory.  
In region of strong interaction only a certain range of edge velocities will result in a valid 
solution whilst for a fixed ue distribution no solution may exist. Some attempts to circumvent 
this problem include inverse formulation with prescribed thickness and variable ue or even 
prescribed Cf and variable δ* and ue [4].   
A robust remedy to the singularity problem is to use two-equation model valid near separation 
point (such as the one used in this paper) and to adopt either quasi-simultaneous or simultaneous 
approach for solving the boundary layer equations. The quasi-simultaneous method is further 
explored since it promises a ‘portable solution’ for the boundary layer that can be used in several 
different cases without altering the flow solver.  
 

5 Quasi-simultaneous methods 

The goal of quasi-simultaneous methods is to present a simplified δ* - ue relation. In the 
potential solver based on panel method the slightest change of δi* leads to i-th panel node being 
displaced in the geometry, which results in changes in the influence coefficient matrix t�q 
throughout i-th row and i-th column. Solving the modified system of equations results in a new 
velocity distribution that differs from the old one at every node. It follows that a local geometry 
modification realised by change of δi* influences the entire solution (fig. 3). Based on this 
observation, one common and several alternative interaction methods are tested.  



 
Fig. 3. The influence of a jump in displacement thickness Δδ* on velocity distribution. Note: features 

exaggerated for illustration purposes. 

5.1 Veldman’s interaction method 
In his papers [6,9] Veldman discusses the cause of Goldstein’s singularity using mathematical 
analysis and formulates the conditions of solution existence. Based on these conditions and the 
thin airfoil theory a simple interaction law is derived: 
 
 X��	�  4�v��∗|���  ��ST�Zk]l 	 X��	�  4�v��∗|���  ��ST�Zmn� (35.) 

 
Which can be under some assumptions (constant ξ coordinates) rewritten into: 
 
 ��	�	k]l 	 ��	�	mn� & 4|���  ��ST� �v���	k]l∗  ��	mn�∗ � (36.) 

Index NEW marks current variables whereas OLD marks values from previous iteration steps. 
For first iteration ��	�	mn� is the inviscid solution and ��	mn�∗ 	 0.	 The influence of this 
interaction method is only local, as it approximates the jump of the local edge velocity based 
on the local displacement thickness jump. An illustration of such local influence is in figure 4. 

5.2 Local linear interaction law based on panel method (LLIL) 
Veldman’s interaction law is a linear relation with coefficient a = 4 / (π Δξ) derived from thin 
airfoil theory. It does not take into account the shape of the airfoil or the angle of attack. A 
logical extension of this law is to calculate the exact local influence between δ* and ue  using 
linearization of the panel method. Each member dij of the matrix Dij represent the partial 
derivative of velocity ue i at node i with respect to the change in coordinates nj of j-th panel node 
in the normal direction to the surface:     
 



 

}�q 	 1�v
b
cc
cd
!�T!CT … !�T!Ck
⋮ !��!Cq!�k!CT

!�k!Cke
ff
fg (37.) 

 
For local linear interaction method, only the influence of the panel node displacement on its 
local edge velocity is needed, so only the diagonal members dii will be used in this method. The 
resulting relation is similar to Veldman interaction law, only more accurate and also more 
computationally expensive due to Dij matrix calculation: 
 
 ��	�	k]l 	 ��	�	mn� & ��� 	�v���	k]l∗  ��	mn�∗ � (38.) 

 
 

 
Fig. 4. The simplified influence of a jump in displacement thickness Δδ* on velocity distribution using 

Veldman’s interaction law.  

5.3 Global downstream linear interaction law based on potential flow solver (GDLIL) 
Since the whole δ* - ue  influence matrix Dij is available, the following update of all downstream ��	mn� values is possible after the solution converges at node i:   
 

 aKR	� ∈ ��y & 1�, . . . , z�				��	q	mn� 	 ��	q	mn� & ��q	�v���	k]l∗  ��	mn�∗ � (39.) 
 
During Newton iteration procedure at each node the same LLIL interaction law as described 
previously (section 5.2) is used. The update of ��	mn�values only affects the downstream nodes. 
It follows that ��	q	mn� value at j-th node will be updated (j-2) times, since the calculation 



marches from node 2 to node j-1 before reching the j-th node. Upstream node ��	mn�values are 
left unchanged, since the calculation runs only in the downstream direction.  

6. Results 

6.1 Flat plate, no interaction  
Experiments with the two-equation  boundary layer calculation confirmed that only small 
number of cases with no interaction law converged, all of which were variations of flat plate 
with constant edge velocity, or very subtle velocity gradients. This also means that the described 
BL model is not suitable for direct or inverse coupling, since the calculation breaks up during 
first pass through the boundary layer. The results for flat plate with no interaction are below:  
 

 
 

Fig. 5. Calculation results for flat plate with no interaction law 

 

 



6.2 NACA0012  
The next model case is the common NACA0012 airfoil with 5° angle of attack and Re = 500 000 
which is a typical Reynolds number on the borderline between large model planes and small 
ultralight aircraft which still exhibits low Reynolds flow effects. The calculations will be 
compared to XFOIL results. Only the suction side results, where the transition occurs, will be 
presented 
 

  

  

 
Fig. 6. Calculation results for NACA0012 at α=5°, Re=500000 using Veldman’s local interaction law 

after 3* boundary layer sweeps with interlaced potential flow updates.  

*Note: Boundary layer calculation using Veldman’s interaction law did not converge after the 
4th sweep.  
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Fig. 7. Calculation results for NACA0012 at α=5°, Re=500000 using local linear interaction law 

based on panel method after 6 boundary layer sweeps with interlaced potential flow updates.  
 
The results using Veldman’s interaction and LLIL are shown above. The results using the 
GDLIL interaction law are very similar to those using LLIL, and only differ in the transition 
region and therefore are not presented. The transition region with very strong interaction is in 
fact the biggest issue of the described interaction laws and is shown in detail in figure 8. 
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Fig. 8. Details of transition region of cp diagram. Top left: Veldman’s interaction law, Top right: 

LLIL, Bottom left: GLIL. Calculation results for NACA0012 at α=5°, Re=500000  

7. Conclusion 
The relatively complex two equation integral method chosen for boundary layer calculation has 
some advantages in terms of behavior at and near separation. However, correct coupling to the 
flow solver is required for the solution to converge.  After ruling out simultaneous interaction 
method for its complexity, several interaction laws for quasi-simultaneous calculations were 
tested. Veldman’s interaction law is based on calculating a simple local linear relation between 
displacement thickness and edge velocity. This relation is based solely on local panel size 
regardless of the panel position, orientation and airfoil shape and does not present any further 
computational effort. Calculation of the boundary layer successfully converges after using 
Veldman’s interaction law, however erratic velocity distribution exists in the transition region 
which only grows with subsequent BL sweeps until the solution diverges. The next logical step 
was to determine the precise local linear relation based on the actual airfoil geometry using the 
panel method (marked as LLIL interaction law). Using this law, unlimited sweeps of the 
boundary layer are possible, due to the interaction law working correctly even in the transition 
region. Higher number of iterations (sweeps) also result in the solution being closer to the 
reference XFOIL data. The transition region edge velocity distribution still lacks the 
smoothness of XFOIL solution so an attempt was made to correct this behavior by developing 
a global downstream linear interaction law (GDLIL), where the downstream edge velocities are 
updated as the calculation marches from the stagnation point towards trailing edge. The effect 
on transition smoothness was positive but almost negligible, the main improvement being faster 
convergence (fewer BL sweeps required) especially for the region closer to trailing edge. Since 
the region near leading edge must converge as well, the advantage of such behavior is 
questionable.  
 Based on the above discussion the coupling method of choice for future implementation 
of BL model is the LLIL interaction law. Effective ways of calculating the velocity influence 
matrix Dij should be researched for speeding up the calculation process. A mix of Veldman’s 
interaction law across most of the airfoil and LLIL at the transition region could combine the 
best of both methods. Also the full Dij matrix could be potentially used for a fully simultaneous 
method. These are possible directions of the future research.   



List of symbols 
Aij Influence coefficient matrix for stream function formulation (m) 
c Chord length (m) 
cp Coefficient of pressure (1) 
Cd Dissipation coefficient (1) 
Cf Friction coefficient (1) 
Cτ  Shear stress coefficient (1) 
Dij Influence coefficient matrix for velocity formulation (m-1) 
H      Shape parameter (1) 
H*  Kinetic energy shape parameter (1) 
n Panel normal (m) 
N Number of panel nodes (1) 
Reθ Momentum thickness Reynolds number (1) 
u u∞, uinv, ue – velocity at infinity, inviscid and edge velocity (m·s-1) 
x Coordinate along the chord (m) 
α Angle of attack ( º ) 
ξ, η Airfoil surface coordinates (ξ – tangent, η - normal) (m) 
Ψ Stream function (m2·s-1) 
γ Specific vortex strength  (m·s-1) 
δ* Displacement thickness (m) 
θ Momentum thickness (m) 
θ* Kinetic energy thickness (m) 
ρ Density (kg·m-3) 
ñ       Amplification ratio (1) 
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