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Abstract

A working viscous-inviscid interaction (VII) for edary layer calculation does not only

enhance the credibility and precision of results &ilso plays a crucial role in existence and
calculation of solution of a two equation boundiyer model on geometry with transition and
weak separation regions. The paper explains theoitapce of solving the boundary layer

integral equations simultaneously or quasi-simuttamsly with inviscid flow. A short overview

of interaction methods is followed by some examptebe effects of VII on solutions. The
overall goal of the presented work is to researokgible ways of implementing the boundary
layer model for different 2D and 3D panel methodm developed by the author.
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1. Introduction

In search of the most feasible approach to addisgpus effects to author’s expanding range
of design tools based on panel methods and voattixd theory the integral two equation

boundary layer model has been selected. The integpaation approach doesn’t require

boundary layer discretization and seems to beiadbgomplement to panel methods that are
BEM (boundary element methods) by nature. One @fahll-established panel codes XFOIL

by M. Drela [1] uses integral two-equation methAéter thorough research of literature and

implementation of the calculations it becomes cthat the viscous-inviscid interaction plays

a key role in the integral two-equation model oubdary layer especially in cases with

transition and weak separation regions.

The simultaneous solution of boundary layer equatiogether with potential flow equations

employed in the XFOIL code is a very complex anousi method with the disadvantage of
placing severe constraints on panel code solvectsire. Since the goal of the current study
was to develop a ,plug-in“ boundary layer calcudatusable in several different applications
including 2D airfoil analysis and cascade analyaiternative approaches to treating viscous-
inviscid interaction had to be explored.

2. Boundary layer formulation

2.1 Boundary layer integral equation parameters

For solving integral equations, only the wall saggboundary) needs to be discretized by
i = 1+N stations with coordinat€s. At each station, several boundary layer pararmébgether
with chosen velocity profile family are required describe the boundary layer. Among the
parameters are: displacement thicknéss momentum thicknes8, momentum thickness
Reynolds numbeRey, kinetic energy thicknes®*, shape parameteks andH*, skinfriction



coefficientC;, dissipation coefficien€Cp and shear stress coeffici€bt The definition of these
parameters is below. All integrals are across thendary layer im-direction perpendicular to

surface.
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2.2 Boundary equations

The differential boundary layer equations are detitrom full Navier-Stokes equations by
using several simplifications and assumptions, [agltonstant pressure across the viscous
layer and steady flow [2]:
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Among the first to derive and use integral equatiarere Karman and Pohlhausen. Some
methods use only the integral momentum equatiorgvthe shape parameter is tied to the
local pressure gradient. A representative examplsuch one-equation method is that of
Thwaites[8]. As described in a paper by Drela ailds33] for separated flows a two-equation
model is needed, so a modified two equation Greentsainment method was used for
turbulent region in their ISES code. For laminajioe a similar two-equation model only with
different closure relation has been proposed f&9S




This paper will be using the boundary layer foratiain described in [3] only with some minor
modifications, such as leaving out compressibiiiated terms. First equation is the integral
momentum equation, the second equation is theikiapergy shape parameter equation:
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The primary unknowns at¢ andd. The edge velocityegenerallydepends on the actual surface
geometry and displacement thickness over the esunface. It will be further investigated, but
for current notatione is assumed to be a function of loeahndé:

u, = u,(H,0,ui,,) (13.)

The remaining parameters are tied by a seriesostct relations that differ for laminar and
turbulent boundary layer.

H* = H*(H,9), Cr = C;(H,0), C,=Cy(H,0) (14.)

2.3 Laminar closure

The following closure relations based on the Fal®kan profile family are valid in the
laminar region:

(4 — H)?
H'=1515+0.076———— , H<4
H* = 1515 0040—(H_4)2 H>4
= 1 + 0. 7 ) > (15.)

Re, & = 0067+001977(7'4_H)2 H<74
eg 2 = . . H—]_ ; S /.

Cr 1.4
Rey— = —0.067 +0.022(1—-——) , H>74 (16.)

6 + ( H— 6) >

2C
Rey —f = 0.207 + 0.00205(4 — H)>5, H <4

H
2, (H — 4)?

Rep =% = 0.207 — 0.003  H>4 17.

o 1+ 0.02(H — 4)2 (7.)

For transition prediction the e”9 method first ddsed by Smith and Gaberoni and also used
in the ISES code [3] is employed. The transitioaotty is based on observing the spatial-
amplification of small velocity perturbation atfdifent frequencies. The key relation is the Orr-
Sommerfeld equation describing the eigen modesayah frequencies of velocity oscillation
in a viscous parallel stream [2]. The e"9 methaliaees that the transition occurs when the
most unstable wave has grown by a factor’eB&03. The exponent 9 is valid for relatively
turbulent flow usually found in wind tunnels [1]igther exponents should be used in strongly
laminar incoming flows, for smooth surfaces and leibrations — scenarios that delay



transition. In case of incoming flow with highertulence intensities and when vibrations or
rough surface is a factor, lower exponents shoaldxperimented with.
An auxiliary transition equation for amplificatioatio i is solved at each laminar station:
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When the amplification ratio at some pointeaches a critical valuéi & 9) the calculation
continues with turbulent closure equations andtddsassumed the transition point.

2.4 Turbulent closure
The following equations are used for the turbutdasure [3]:
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The system of equations must be closed by one retaton forC,. Green et. al. [5] proposed
a method where the actual shear stress coeffisi@alculated from its equilibrium valug ¢,
and its spatial rate of change:
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Where:
, 0.015 (H - 1)3
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3. Boundary layer solution method

In laminar region, only two equations (11,12) askved as a system of PDEs using Newton-
Raphson iteration scheme. The amplification raticalculated after each iteration. In turbulent
region, the additional equation for calculatingah&tress must be calculated together with the
integral equations. The equations (11,12,26) caewatten for Newton iteration method using
central differencingi{1/2):
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The calculation is marching downstream and thetmwoiat each station is obtained in several
iteration steps:
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The partial derivativeéfi, of2 and (in turbulent regiorgfs are rather complex and will not be
presented here.



4. Viscous — inviscid interaction methods

4.1 Selected 2D panel method for boundary layer impmentation

The boundary layer will be implemented into a sien®D panel code for single airfoil analysis.
It is expected that the findings and conclusionglenasing this setup are valid for other panel
codes, such as 2D cascade panel method.

As a first step, inviscid solution must be obtaineihg the airfoil geometry and 2D
panel method. The selected panel method usesaarstumction formulation and linear vortex
strength distribution. The surface is discretizgd\lpoints from the upper trailing edge across
the leading edge to the lower trailing edge. Thenolary condition is in form of a constant
stream function on the surface. In practice thendawy condition is evaluated in nodal points,
which form the panel edges. Unknowns are the vatengthy; in each nodal point and the
surface value of stream functi@fy. For each nodal point, a linear equation can baditated
from the boundary condition [1]:

N
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To complete the system of N+1 equations, Kutta tmmdis imposed on the trailing edge:

Yityn=0 (34.)

One of the benefits of the above formulation isfdet that surface velocity at each nodal point
is equal to the vortex strengtia,(= tv;).

The boundary model described earlier is in faddarfodel not taking into account the surface
curvature. Its application to the airfoil surfaseshown in figure 1.
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Fig. 1. Transformation from 2D boundary layer into 1D fidate boundary layer problem

4.2 Viscous-inviscid interaction

The main idea behind using potential flow solvarviscous flow is in dividing the flow field
into inviscid region and viscous boundary layee(Bg. 2, top). Since the flow in the boundary
layer is slower due to shear stress, this musbbheebow taken into account by the potential
solver. Shifting the solid wall outward in the naindirection to the wall using the displacement
thickness value is one generally accepted methexlf(g. 2, bottom). Other methods use wall
transpiration techniques, where the boundary lalyeckness is simulated by source
singularities placed along the walls with a prdssdi source strengths based on boundary layer
thickness. The disadvantage of the second optithei$act that severe modifications must be



made to the flow solver if it does not use souraegts, so the choice of the described method
is the wall displacement technique.
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Viscous layer

099

—
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Fig. 2. Solution of the boundary layer problem using dispiment of the solid surface by the
displacement thickness valoe

The boundary layer edge velocityat the border between viscous and inviscid regdaken

to be identical to the surface velocity of invissmlution using the modified geometry.

The relatively complex calculation of boundary lagguations in our case using downstream
marching must therefore shase anduewith the potential flow solver, which is solvedaaice
using linear system of equations. The sharinggifldcement thickness and edge velocitye
values is called viscous-inviscid interaction aaaboundary layer coupling.

4.3 Methods of viscous-inviscid interaction

The simplest method of boundary layer couplingasmteraction at all. First the edge velocity
is calculated using panel method and then the aryrdyer is solved with the prescribed edge
velocity as a constant. If the thickness and itsatians are very small, this method was
expected to give reasonable results.

For true viscous-inviscid interaction methods Vedhm[6] suggests the following types

arranged by complexity:

» Direct method: Intuitive technique where the patdntliow solver calculates edge
velocity, the boundary layer solver calculatesdisplacement thickness, the geometry
is changed to account for the BL thickness andwhele process is repeated in several
iteration steps.

* Inverse method: The same procedure as with direthod is followed with the only
difference that the potential solver is modifiedinwerse mode where it calculates
geometry (displacement thickness), whereas the daynlayer solves for edge
velocity, based on givest distribution.

* Quasi-simultaneous method: A simplified relationweens* andue is used together
with the boundary equations. Several iteration $oeth subsequent BL and potential
flow calculations are still needed, the main difere with respect to the direct method



is the fact that botlé* anduearevariables, which brings some important benefitwids
be described in section 4.4.

* Full simultaneous method: The boundary layer equatiare solved together with
potential flow in one system of equations. The wralhspiration technique is beneficial
in this case. XFOIL [1] uses such layout.

4.4 Strong interaction, separation and Goldstein sgularity

In case of an attached laminar flow, the boundayeid grows gradually in thickness which
presents a weak interaction problem. When the 8pproaches separation, traditional integral
methods face difficulties in producing valid sotutias was first described by Goldstein in 1948
[7]. The Goldstein singularity refers to the siragitly of solution near separation point at the
trailing edge of the airfoil using traditional oeguation downstream marching boundary layer
algorithms.

The issues with singularity are faced generallynwdver there is strong interaction between the
boundary layer and potential flow. This includesiilaar boundary layer separation (usually
followed by transition and reattachment - laminaiblles), transition and trailing edge
separation. Full laminar or turbulent separatiothait reattachment can be classified also as a
strong interaction, but cannot be handled by tlesgmted boundary layer theory.

In region of strong interaction only a certain ramgf edge velocities will result in a valid
solution whilst for a fixedJe distribution no solution may exist. Some attemptsitcumvent
this problem include inverse formulation with pneised thickness and variable or even
prescribedCs and variable* andue [4].

A robust remedy to the singularity problem is te tiwo-equation model valid near separation
point (such as the one used in this paper) anddptaither quasi-simultaneous or simultaneous
approach for solving the boundary layer equatidim quasi-simultaneous method is further
explored since it promises a ‘portable solutiom’tfee boundary layer that can be used in several
different cases without altering the flow solver.

5 Quasi-simultaneous methods

The goal of quasi-simultaneous methods is to pteaesimplified 6* - ue relation. In the
potential solver based on panel method the sligbtesnge ofi* leads ta-th panel node being
displaced in the geometry, which results in charigethe influence coefficient matrid;;
throughoui-th row and-th column. Solving the modified system of equagiogsults in a new
velocity distribution that differs from the old oaeevery node. It follows that a local geometry
modification realised by change éf influences the entire solution (fig. 3). Based bist
observation, one common and several alternatiesdntion methods are tested.



Fig. 3. The influence of a jump in displacement thicka2%son velocity distribution. Note: features
exaggerated for illustration purposes.

5.1 Veldman'’s interaction method

In his papers [6,9] Veldman discusses the causstifstein’s singularity using mathematical
analysis and formulates the conditions of soluéristence. Based on these conditions and the
thin airfoil theory a simple interaction law is dexd:

4uo,6; ] [ 4uo,6; (35)
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Which can be under some assumptions (con&tenbrdinates) rewritten into:
Ueingw = Ueiop T muw (6 new — 6ioLp) (36.)

Index NEWmarks current variables whergakD marks values from previous iteration steps.
For first iterationu,;o.p IS the inviscid solution and;,,, = 0. The influence of this
interaction method is only local, as it approxinsatiee jump of the local edge velocity based
on the local displacement thickness jump. An iasbn of such local influence is in figure 4.

5.2 Local linear interaction law based on panel mébd (LLIL)

Veldman’s interaction law is a linear relation wabefficienta = 4 / (x 4%) derived from thin
airfoil theory. It does not take into account these of the airfoil or the angle of attack. A
logical extension of this law is to calculate th@e local influence betweet andue using
linearization of the panel method. Each memtieiof the matrixDj represent the partial
derivative of velocitye i at node with respect to the change in coordinaiesf j-th panel node
in the normal direction to the surface:
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For local linear interaction method, only the igfice of the panel node displacement on its
local edge velocity is needed, so only the diagamahbersi will be used in this method. The
resulting relation is similar to Veldman interactitaw, only more accurate and also more
computationally expensive due@y matrix calculation:

Ue i NEWw = UeioLp T+ ii Ueo (8] Ngw — 6; 0LD) (38.)

Ue

modified velocity distribution (local interaction law)

original velocity distribution

Fig. 4. The simplified influence of a jump in displacentbitknessio* on velocity distribution using
Veldman'’s interaction law.

5.3 Global downstream linear interaction law base@n potential flow solver (GDLIL)

Since the wholé* - ue influence matripDj; is available, the following update of all downstrea
U, o.p Values is possible after the solution convergewdei:

forje{(i+1),....,N} Ucjorp =1UejoLp + dij Ue(8{ new — OF 0LD) (39.)

During Newton iteration procedure at each nodestree LLIL interaction law as described
previously (section 5.2) is used. The updatef; ,values only affects the downstream nodes.
It follows thatu, ;o,p value atj-th node will be updated-g) times, since the calculation



marches from node 2 to node j-1 before reching-thenode. Upstream node ,,pvalues are
left unchanged, since the calculation runs onithendownstream direction.

6. Results

6.1 Flat plate, no interaction

Experiments with the two-equation boundary layaicalation confirmed that only small
number of cases with no interaction law convergdidof which were variations of flat plate
with constant edge velocity, or very subtle velpgitadients. This also means that the described
BL model is not suitable for direct or inverse cliog, since the calculation breaks up during
first pass through the boundary layer. The redattflat plate with no interaction are below:
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Fig. 5. Calculation results for flat plate with no intettaan law



6.2 NACA0012

The next model case is the common NACAO0012 aividh 5° angle of attack arfiee = 500 000
which is a typical Reynolds number on the borderletween large model planes and small
ultralight aircraft which still exhibits low Reyndd flow effects. The calculations will be
compared to XFOIL results. Only the suction sideuhes, where the transition occurs, will be

presented
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Fig. 6. Calculation results for NACA0012 at5°, Re=500000 using Veldman'’s local interactiowla
after 3* boundary layer sweeps with interlaced titd flow updates.

*Note: Boundary layer calculation using Veldmamsaraction law did not converge after the

4th sweep.
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Fig. 7. Calculation results for NACA0012 at5°, Re=500000 using local linear interaction law
based on panel method after 6 boundary layer sweépdnterlaced potential flow updates.

The results using Veldman’s interaction and LLIle ahown above. The results using the
GDLIL interaction law are very similar to those ngiLLIL, and only differ in the transition
region and therefore are not presented. The transigion with very strong interaction is in
fact the biggest issue of the described interaddws and is shown in detail in figure 8.
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Fig. 8. Details of transition region of,cliagram. Top left: Veldman'’s interaction law, Taght:
LLIL, Bottom left: GLIL. Calculation results for NDR0012 atx=5°, Re=500000

7. Conclusion

The relatively complex two equation integral metlesbdsen for boundary layer calculation has
some advantages in terms of behavior at and nparaen. However, correct coupling to the
flow solver is required for the solution to convergAfter ruling out simultaneous interaction
method for its complexity, several interaction lafws quasi-simultaneous calculations were
tested. Veldman'’s interaction law is based on datmg a simple local linear relation between
displacement thickness and edge velocity. Thistioglas based solely on local panel size
regardless of the panel position, orientation arfdibshape and does not present any further
computational effort. Calculation of the boundaaydr successfully converges after using
Veldman’s interaction law, however erratic velodiigtribution exists in the transition region
which only grows with subsequent BL sweeps unglgblution diverges. The next logical step
was to determine the precise local linear relatiased on the actual airfoil geometry using the
panel method (marked as LLIL interaction law). UWsithis law, unlimited sweeps of the
boundary layer are possible, due to the interaddanworking correctly even in the transition
region. Higher number of iterations (sweeps) aksult in the solution being closer to the
reference XFOIL data. The transition region edgéocrty distribution still lacks the
smoothness of XFOIL solution so an attempt was ni@derrect this behavior by developing
a global downstream linear interaction law (GDLjere the downstream edge velocities are
updated as the calculation marches from the stagnpaoint towards trailing edge. The effect
on transition smoothness was positive but almagiigible, the main improvement being faster
convergence (fewer BL sweeps required) especiatlyhie region closer to trailing edge. Since
the region near leading edge must converge as el ,advantage of such behavior is
guestionable.

Based on the above discussion the coupling metholdoice for future implementation
of BL model is the LLIL interaction law. Effectiv@ays of calculating the velocity influence
matrix D;j should be researched for speeding up the calcaolgtiocess. A mix of Veldman’s
interaction law across most of the airfoil and LLldt the transition region could combine the
best of both methods. Also the full Batrix could be potentially used for a fully sinarieous
method. These are possible directions of the fuesearch.



List of symbols

Aj Influence coefficienmatrix for stream function formulation (m)
c Chord length (m)
cp  Coefficient of pressure (1)
Cqs Dissipation coefficient (1)
Ct  Friction coefficient (1)
C. Shear stress coefficient (1)
Dij Influence coefficienmatrix for velocity formulation (M)
H  Shape parameter (1)
H* Kinetic energy shape parameter (1)

n Panel normal (m)
N  Number of panel nodes (1)
Re Momentum thickness Reynolds number (1)

u U, Unv, Ue — velocity at infinity, inviscid and edge velocity (m-sb)
X Coordinate along the chord (m)
a Angle of attack (°)
&, n Airfoil surface coordinates?(— tangenty - normal) (m)
¥ Stream function (m?-s?)
y Specific vortex strength (m-sb)
o*  Displacement thickness (m)

0 Momentum thickness (m)
¢*  Kinetic energy thickness (m)
o Density (kg- )
i Amplification ratio (1)
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