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Abstract

This paper deals with derivation of mathematical model and implementation of fluid-structure
interaction. It is coupled problem. Firstly the whole problem is described by partial differential
equations including boundary conditions on common interface. ALE method is used to capture
time variable shape of fluid domain. Secondly numerical model is derived. Finite element
method is utilized for discretization in space for structure and fluid part of problem. The
BDF2 scheme was implemented for time discretization of fluid flow and the Newmark method
was applied for time solution of elastic body deformation. In the end numerical results are
presented.
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1 Introduction

The flow driven vibration of elastic bodies is a problem investigated and solved in many technical
applications. This paper deals with biomechanics of human vocal folds, see e.g. [14]. Human
voice is one of basic human being’s characteristics and it plays an important role in the quality of
a human life. The air flow from lungs excites the vibrations of the human folds which setting is
influenced by the human muscles and causes the human voice production. Therefore the attention
is further devoted for better understanding of this complex process. This problem was studied in
many papers, for example see [9], [13]. Nevertheless, the main goal of this paper is to develop a
simplified model for fluid-structure interaction (FSI) and to verify it’s basic functionality.

Here, we focus on the derivation of mathematical model and on the development of on it based
numerical algorithm. This implemented algorithm we verify on a few test cases, where only low
Reynolds number was involved. For the analysis of results were Fourier transformation and modal
analysis utilized. The numerical method is based on finite element method (FEM). For the fluid
solver the cross-grid P1 elements and for the elastic part P1 elements are implemented. The
Arbitrary Lagrangian-Eulerian (ALE) method is involved for handling with the time-dependent
domain. For the coupled problem the full-implicit scheme is used.

Figure 1: Schema of vocal folds model with boundaries marked before and after deformation.



2 Mathematical model

The vocal fold model is considered as 2D model in this paper. A scheme of the problem model
is shown in Figure 1, where Ωs

ref denotes the reference representation of the structure, Ωf
ref is

the domain occupied by the fluid at the time instant t = 0 (also reference) and ΓWref
= ΓW0 is

the common interface. At instant time t structure domain is deformated to shape Ωs, but it is
treated in reference (Lagrangian) coordinates and therefore Ωs = Ωs

ref . On the other hand the

fluid domain is considered in generalized Eulerian-Lagrangian coordinates so Ωf
ref turns to Ωf

t in
time t and ALE method has to be used.

ALE method. Arbitrary Lagrangian-Eulerian method (ALE) is generalization of Eulerian and
Lagrangian description of investigated domain. It is assumed there exists diffeomorphism At, which
maps reference domain Ωf

ref to computational domain Ωf
t in any time t ∈ [0,T]. This mapping

satisfies
At : Ω

f

ref −→ Ω
f

t , t.j. X ∈ Ω
f

ref 7−→ x = x̃(X, t) = At(X) ∈ Ω
f

t , (1)

where X denotes point in domain Ω
f

ref and x denotes point in domain Ω
f

t . In addition we suppose
to At fulfill

∂At

∂t
∈ C(Ω

f

ref ), At(∂Ωref ) = ∂Ωf
t , t ∈ [0,T]. (2)

Then we name this mapping At ALE mapping.
It should be mention that At does not trace real motion of the fluid as it is posed in Lagrangian

coordinates. At just maps Ωf
ref to time dependent domain Ωf

t . The differences between Eulerian,
Lagrangian and ALE coordinates are shown in Figure 2.

Figure 2: Differences between Eulerian, Lagrangian description (represented by Lt) and ALE
mapping At.

Now we can define the velocity of the domain deformation wD as

wD(x, t) = ŵD(A−1
t (x), t), t ∈ (0,T), x ∈ Ωf

t , (3)

where ŵD is quantity defined on Ωf
ref and

ŵD(X, t) =
∂

∂t
At(X), t ∈ (0,T), X ∈ Ωf

ref . (4)

The we can introduce so called ALE derivative of function f = f(x, t) for x ∈ Ωf
t and t ∈ (0,T)

as derivative with respect to X ∈ Ωf
ref as

DA

Dt
f(x, t) =

∂f̂

∂t
(X, t), (5)



where x = At(X) and f̂(X, t) = f(At(X), t). We apply the rule of multivariable composite function
derivative which leads to

DA

Dt
f(x, t) =

∂f

∂t
(At(x), t) =

∂f

∂t
(x, t) +wD(x, t) · ∇f(x, t), (6)

where wD(x, t) is defined by relation (3). Further information can be found for example in [10].

Flow model. First we describe incompressible viscous fluid flow in Eulerian coordinates with
partial differential equations. Fluid flow description follows from principle of mass and momentum
conservation. It can be derived that the principle of mass conservation is given in differential form
by

∂ρf

∂t
+ div (ρfv) = 0 in Ωf

t , (7)

where ρf denotes density of fluid and v is fluid velocity. But we suppose incompressibility of the
fluid and therefore constant fluid density so then equation (7) gets final simplified version after
disivion by ρf

div v = 0 in Ωf
t . (8)

Similarly the principle of momentum conservation must hold for each component of velocity vector.
Then the equation of momentum conservation can be derived with the help of Reynold’s transport
theorem in the form, see [5]

∂ρfvi
∂t

+ div (ρfviv) = ρfgfi + div
∂σf

ij

∂xj
in Ωf

t , (9)

where gfi is a volume force and σf
ij denotes stress tensor of fluid. After expressing tensor σf =

−pI + 2µfD(v), division equation (9) by constant density ρf , introducing kinematic pressure as

p̃ = p
ρf and kinematic viscosity as νf = µf

ρf , we get so called Navier-Stokes equation in the vector
form

∂v

∂t
+ (v · ∇)v − νf∆v +∇p̃ = gf . (10)

In next we will omit writing tilde above kinematic pressure p̃.
Now we can reformulate derived equations (8) and (10) from Eulerian coordinates to the ALE

description. The equation of continuity does not change. But in Navier-Stokes equation classical
time derivative turns to ALE derivative according to (6)

∂v

∂t
=

DAv

Dt
−wD · ∇v. (11)

Then we can rewrite equation (11) to the final shape, see for example [6]

DAv

Dt
+ ((v −wD) · ∇)v − νf∆v +∇p = gf . (12)

To correct formulation of the problem we must add initial and boundary conditions. We
prescribe different types of boundary conditions on the different parts of boundary. The scheme
of fluid domain Ωf

t at arbitrary time t is shown in Figure 3.

Figure 3: The computational domain Ωf
t at the time instant t and it’s boundaries.



The Γf
In is the inlet part of the boundary, Γf

Out is the outlet part of the boundary, Γ
f
Dir represents

solid wall of the glottal channel surface and the only time dependent boundary ΓWt represents the
interface on the vibrating vocal folds.

So the boundary and inital conditions are given as

a) v(x, t) = 0 for x ∈ Γf
Dir, t ∈ (0,T),

b) v(x, t) = vDir(x, t) for x ∈ Γf
In, t ∈ (0,T), (13)

c) (p(x, t)− pref )n⃗− νf
∂v

∂n⃗
(x, t) = 0, for x ∈ Γf

Out, t ∈ (0,T),

d) v(x, t) = wD(x, t) for x ∈ ΓWt
.

e) v(x, 0) = v0(x) for x ∈ Ωf
ref .

Elastic structure. The vocal fold model is considered as the 2D compliant structure. The
deformation u of the structure is given by the equations of motion

ρs
∂2u

∂t2
−

∂τsij(u)

∂xj
= fs in Ωs × (0,T), (14)

where ρs is the structure density, the tensor τ sij is the Cauchy stress tensor and the vector fs is the
volume density of an acting force. Using the generalized Hook’s law, the Cauchy stress tensor τ sij
is given by, see for example [2],

τsij = Cijkl e
s
kl, (15)

where Cijkl denotes the fourth order tensor of elastic coefficients and esjk is the strain tensor. The
strain tensor esjk is given under assumption of small displacements by

esjk =
1

2

(
∂uj

∂xk
+

∂uk

∂xj

)
. (16)

In addition we assume the isotropic body. Then equation (15) can be written in the form

τsij = λsdiv u+ 2µsesij , (17)

where λs, µs are Lame coefficients dependent on the Young modulus of elasticity Es and the
Poisson’s ratio σs as

λs =
Esσs

(1 + σs)(1− 2σs)
, µs =

Es

2(1 + σs)
.

Equation (14) is supplied with the following initial and the boundary conditions

a) u(x, 0) = u0(x) for x ∈ Ωs,

b)
∂u

∂t
(x, 0) = u1(x) for x ∈ Ωs, (18)

c) u(x, t) = uDir(x, t) for x ∈ Γs
Dir, t ∈ (0,T),

d) τsij(x, t)n
s
j(x) = qsi (x, t), for x ∈ Γs

Wt
, t ∈ (0,T),

where the boundaries ΓWt ,Γ
s
Dir are shown in Figure 1.

Coupling conditions. The location of the interface ΓWt varies in time and it depends on estab-
lishing force equilibrium between aerodynamic and elastic forces. On the other hand these acting
forces are dependent on the position and velocity of this interface. Therefore we speak about a
coupled problem.

The shape of the interface ΓWt in time t is given by the deformation u, so

ΓWt =
{
x ∈ R2|x = X + u(X, t), X ∈ ΓWref

}
. (19)



Deformation u is influenced by aerodynamic forces which work on structure interface via pressure
and shear forces. The equilibrium is then given by the equation

2∑
j=1

τsij(X)ns
j(X) =

2∑
j=1

σf
ij(x)n

s
j(x), i = 1, 2, x ∈ ΓWt , X ∈ ΓWref

, (20)

where σf
ij is stress tensor of fluid, ns

j(X) denotes the components of the outer normal of the
structure domain to the interface ΓWt=0 and x is computed from the known deformation u as
x = X + u(X, t). The equation (20) can be rewritten as the Neumann boundary condition (18 d)

qsi (X, t) =

2∑
j=1

σf
ij(x)n

s
j(x), i = 1, 2, x ∈ ΓWt , t ∈ (0,T). (21)

The boundary condition for fluid on the interface ΓWt is prescribed to be in correspondence with
motion of the elastic body, e.g. as it was done in equation (13 d).

3 Numerical approximation

For discretization in space of the presented mathematical model represented by the partial dif-
ferential equations (8), (12) and (14) was used the finite element method. The derived model is
discretized in time by the Newmark and the BDF2, respectively. The time interval [0,T] is divided
into the equidistant partition with a constant time steps ∆t.

Elastic structure. The weak formulation of equation (14) must be derived to FEM can be
applied. The solution u is sought in the space V = V × V , where V = {f ∈ W 1,2(Ωs)|f =
0 on Γs

Dir}, and W k,p(Ω) denotes the Sobolev’s space. Equation (14) is reformulated with the use
of Hook’s law (15) and the symmetry of stress tensor in the weak sense in space as∫

Ωs

ρs
∂2u

∂t2
Φ dx+

∫
Ωs

Cijkle
s
kl(u)e

s
ij(Φ) dx =

∫
Ωs

fs ·Φ dx+

∫
Γs
Neu

qs ·Φ dS. (22)

Futhermore, the space V is approximated by the finite dimensional space Vh ⊂ V with the
dimension 2Nh. Thus the discrete solution can be written as a linear combination of basis functions
Φj ∈ Vh, i.e. uh(x, t) =

∑2Nh

j=1 αj(t)Φj(x). Using this expression and labeling α = (αi) the
equation (3) has now the form

Mα̈+Kα = b(t), (23)

where the elements of the matrices M = (bij),K = (kij) and b(t) = (bi)(t) are given by

mij =

∫
Ωs

ρsΦj ·Φi dx, kij =

∫
Ωs

Cklmne
s
mn(Φj)e

s
kl(Φi) dx, bi =

∫
Ωs

fs ·Φi dx+

∫
Γs
Neu

qs ·Φi dS.

(24)

In practical application the damping proportional to Cα̇ is often considered, where matrix C can
be chosen as C = c1M+ c2K with small parameters c1, c2. Then equation (23) changes to

Mα̈+ Cα̇+Kα = b(t). (25)

In the practical computation the Lagrange finite elements of the first order are used, which give
the first order of accuracy in space.

Newmark’s method. The Newmark’s method is used for the time discretization and for the
solution of ordinary differential equations of the second order in a prototype form

y′′(t) = f(t, y(t), y′(t)) for t ∈ (0,T), y(0) = y0, y′(0) = y′0. (26)



It’s application leads to the numerical scheme

yn+1 = yn +∆ty′n +∆t2
(
βfn+1 + (

1

2
− β)fn

)
(27)

y′n+1 = y′n +∆t (γfn+1 + (1− γ)fn) , (28)

where fn = f(tn, yn, y
′
n), fn+1 = f(tn+1, yn+1, y

′
n+1). The scheme is of second order accuracy in

time for the parameter choice β = 1
4 , γ = 1

2 , see for example [3].
Step order of solution problem (25) in new time level tn+1 is then simple:
Firstly we solve linear equation system acquired from (25) by substituting the value of yn+1, yn+1

by (27) and by replacing fn+1 = y′′
n+1(

M+
∆t

2
C+ β(∆t)2K

)
︸ ︷︷ ︸

=A

y′′
n+1 = gs

n+1, (29)

where A is iterative matrix and we denote as right side the expression gn+1 = bn+1 − Cy′
n −

∆t
2 Cy′′

n − Kyn − ∆tKy′
n − 1−2β

2 (∆t)2Ky′′
n. System of equations (29) is easy to be solved for

example by conjugate gradient method, because the matrix A is composed of positive defined
matrices K,C,M.

Secondly we compute new values of y′
n+1 and yn+1 from equations (27), where we substitute

again fn+1 by already known value of y′′
n+1.

ALE method. The ALE mapping is treated using the elastic solver analogy because ALE
method in fact maps Ωf

ref to deformed Ωf
t . This solver just solves stationary elasticity prob-

lem without any source term in given time tn, where it is prescribed Dirichlet boundary condition
as boundary condition – this condition equals deformation of common interface on ΓWtn+1

, and
otherwise equals zero.

Interesting part of this procedure is the choice of elastic parameters λALE , µALE . They are set
specifically for each triangle of triangulation proportional to the triangle area. This choice ensures
to deform small triangles along common interface ΓWt less then bigger ones inside domain Ωf

t . This
choice is based on article [8]. This arrangement helps to spread deformation on the bigger part of

domain Ωf
t and to support the stability of whole algorithm. For more details see for example [15].

Flow model. For the flow model we reverse the step order. At first we discretize equation (12)
in time and then both in space. For time discretization backward differentiation formula of second
order (BDF2) was used. This method is suitable for ordinary differential equations of first order,
see [1]. So the ALE derivative is approximated as

DAv

Dt
(xn+1, tn+1) ≈

3vn+1(xn+1)− 4vn(xn) + vn−1(xn−1)

2∆t
. (30)

We denote vi(xn+1) = vi(xi), where xi = Ati(A
−1
tn+1

(xn+1)) for i = n − 1, n. Then the scheme
leads together with equation (8) to

3vn+1 − 4vn + vn−1

2∆t
+ ((vn+1 −wn+1

D ) ·∇)vn+1 − νf ∆vn+1 +∇pn+1 = gf,n+1, (31)

∇ · vn+1 = 0.

Then we continue with the weak formulation. The velocity solution v in time tn+1 is sought
in the functional space X = W1,2(Ωf

tn+1
) and q ∈ M = L2(Ωf

tn+1
). Further, the space of the test

function is defined by

X = {f ∈ W 1,2(Ωf
tn+1

)| f = 0 on Γf
Dir ∪ Γf

In ∪ Γf
Wtn+1

} ⊂ W 1,2(Ωf
tn+1

).

For better arrangement we will write vn+1 as v and Ωf := Ωf
tn+1

. The weak formulation in space is
acquired by multiplication of the first equation (31) by Φ ∈ X, integration over the whole domain



Ωf and by using the Green’s theorem, that results in the following equations(
3v − 4vn + vn−1

2∆t
,φ

)
Ωf

+ ((v −wD) · ∇)v,φ)Ωf + νf (∇v,∇φ)Ωf − (p,div φ)Ωf =

= (gf ,φ)Ωf − (pref ,φ · n⃗)L2(Γf
Out)

, (32)

(q, divv)Ωf = 0,

where (·, ·)Ω stays for the scalar product of L2(Ωf ) or [L2(Ωf )]2 spaces.
The FEM then approximates spaces X and M by the finite dimension spaces Xh and Mh, so

the solution v ≈ vh can be expressed as

vh(x) =

2Nvel
h∑

j=1

βj φj(x), ph(x) =

2Nvel
h +Np

h∑
j=2Nvel

h +1

γj qj(x). (33)

Now by using relations (33) in equations (32), which has to hold for every pair of test functions
(φj , qj) ∈ Xh ×Mh, we get the system(

A(v∗
h) B

BT 0

) (
β
γ

)
=

(
g
0

)
, (34)

where A(vh) =
1
∆tM + C(v∗

h) + D. The elements of the matrices M = (mij),C = (cij),D = (dij)
and components of vector g = (gi) are given by

mij =
3

2
(φj ,φi)Ωf , cij = ((v∗

h −wD) · ∇)φj ,φi)Ωf , dij = νf (∇φj ,∇φi)Ωf , (35)

bij = (−qj , div φi)Ωf , gi = (gf ,φi)Ωf − (pref ,φi · n⃗)L2(Γf
Out)

+

(
4un − un−1

2∆t
,φi

)
Ωf

.

The system of equations (34) is non-linear. For its solution the Oseen linearization v∗
h = vn is

used. For the solution of the system (34) the mathematical library UMFPACK is employed, see
[4].

Figure 4: The crossgrid finite element for incompressible problem (P1-crossgrid/P1). Dots at
vertices represent pressure variables and arrows are components of velocity.

One of the aspect of the FEM is that the choice of spacesXh,Mh cannot be made randomly, but
they must satisfy the well-known Babuška-Brezzi condition, see [7]. In this article P1-crossgrid/P1
elements (see Figure 4) are used, which according to [11] satisfy BB condition.

Coupled problem. Last part of our algorithm is coupling both solvers via aerodynamic forces.
They are evaluated from known the velocity and pressure values at adjacent triangles to interface
ΓWt according to (21)

qsi (X, t) = σf
ij(x)n

s
j(x) =

(
−p+ 2νf

1

2

(
∂vi

∂xj
+

∂vj

∂xi

))
ns
j , (36)



where ns = (ns
1, n

s
2) is the outer normal to boundary of the structure ΓWt . The values of aerody-

namic forces are computed in vertices on the interface with the help of numerical quadrature and
these values are provided to elastic solver as discrete version of Neumann boundary condition.

The algorithm solving coupled problem is implemented in full-implicit form:
We start with the initial values v0, p0,u0,q

s
0, At0 and Ωf

t0 and l = 0. The index l denotes inner
iteration on relevant time level. Then for n = 0, 1, . . . we proceed in computation in the following
steps:

1. Based on the presented scheme (29) it is acquired new deformation un+1,l on n+1-th time
layer and in l-th inner iteration, where qs

n+1,l is extrapolated from qs
n+1,l−1 or qs

n if l = 0.

2. From the known deformation un+1,l the ALE mapping Atn+1,l
is constructed and Ωf

tn+1,l

is determined. Afterwards we set wn+1,l
D (x) ≈ 3Atn+1,l

(X)−4Atn (X)+Atn−1
(X)

2∆t , where x =
Atn+1,l

(X).

3. We solve (35) and we get vn+1,l, pn+1,l defined on Ωf
tn+1,l

.

4. The action of the aerodynamic forces qs
n+1,l on the interface are determined from (36) at

time tn+1 in l-th inner iteration from the known values vn+1,l, pn+1,l.

5. We check if condition |qs
n+1,l − qs

n+1,l−1| < ϵ or if l = 0 condition |qs
n+1,l − qs

n| < ϵ holds,
where ϵ is an appropriate constant.

• If yes, we denote all quantities fn+1 := fn+1,l, then we set n := n + 1, l := 0 and we
continue with step 1 on the new time level.

• If no, we increase l := l + 1 and we continue with step 1.

4 Numerical results

The numerical results for fluid flow interacting with the vocal fold model M5 suggested by paper
[12] are presented. The model M5 together with the triangulation is shown in Figure 5. Here, only
one half of the channel was used as the computational domain with symmetric boundary condition
prescribed at the top of the fluid domain (y = 0.003m).

Figure 5: The triangulation of the computational domain Ωf
0 and of the vocal fold model M5

(dimensions in [m]).

Modal analysis. The eigenfrequencies of the vocal fold model were determined by modal analy-
sis. The solution of the system of ordinary differential equations Mü+Ku = 0, where the matrices
M and K are given by (24), is sought in the form u = ei ωjtuj , which leads to a generalized
eigenvalue problem

(K− ω2
j M)uj = 0 =⇒ det(K− ω2

j M) = 0. (37)

The results are shown in Table 1 left, where the Young’s modulus of elasticity was Es = 12 kPa,
σs = 0, 4 inside Ωs

ref and Es = 100 kPa, σs = 0, 4 in a thin layer along the interface ΓWref
.



Frequency [Hz]

f1 51.43
f2 106.34
f3 117.36
f4 189.76
f5 225.11

Frequency x-direction y-direction

f1 51 106
f2 106 117
f3 117 261

Table 1: Left: The lowest eigenfrequencies obtained from the modal analysis of model M5.
Right: The significant eigenfrequencies obtained from the spectral analysis of the time signal at
the point A in structure test.

Dynamics of elastic structure, energy conservation test. Furthermore, the solution of the
system (23) with zero body forces and non-zero initial conditions but without fluid interaction was
approximated by FEM, and the time signal of a chosen point A [x = 0.0113m, y = −0.0032m]
was analyzed by Fourier transformation. The initial conditions were u1 = 0 and

. u0(x, y) =

(
0

0.005× (y + 0.011)

)
.

The obtained frequencies for the motion of the point A are shown in Table 1 right. The frequencies
agree well with the modal analysis results summarized in Table 1 left.

Another possibility, how to verify solver of elastic body, is to control energy conservation
of vibrating structure. The total energy Es consists of sum of kinetic and potential energy –
Es = Es

kin +Es
pot. These energies Es

kin, E
s
pot are given and then approximated in discrete form as

Es
kin =

1

2

∫
Ωs

ρsu̇2 dx ≈ 1

2
u̇TMu̇, Es

pot =
1

2

∫
Ωs

Cijkleij(u)ekl(u) dx ≈ 1

2
uTKu. (38)

The results shown in Figure 6 confirm energy conservation of implemented procedure (no damping
was considered). For comparison the same test case was simulated with damping constants c1 =
c2 = 5×10−5. Results of this case are shown in Figure 7 and it is obvious that energy is considerably
decreasing.

Figure 6: Graph of energy conservation, potential energy Es
pot is plotted with red colour and

crosses, kinetic energy Es
kin is pictured by blue colour and behaviour of total energy Es is shown

with black colour.



Figure 7: Graph of energy conservation for damping test. Potential energy Es
pot is plotted with

red crosses, kinetic energy Es
kin blue and the total energy Es is shown with black colour.

FSI test. For testing interaction between fluid and undamped elastic body, we prescribed to
elastic body all initial and initial boundary conditions equal zero. The fluid setting was following:
The kinematic viscosity was set νf = 1, 5 × 10−5 m/s2 and the inlet boundary condition has a
parabolic profile:

vDir = 0.025×
(
1913.26× (Yi + 0.011)(0.017− Yi)

0

)
, [Xi, Yi] ∈ Γf

In. (39)

The interaction was enabled after time t = 0.1 s, when the velocity profile behind the vocal fold
was developed. The flow excited a periodic vibration of vocal fold with small amplitudes.

Figure 8 shows the approximation of the development of x-component velocity between time
0.05 and 0.3 s. The flow acceleration can be seen in Figure 8 in the narrowest part of the channel.
Reynold’s number for this setting was approximately 10.

Figure 9 and 10 show time signals of x-displacement and y-displacement of the point A in
FSI test together with their Fourier transformation, respectively. The comparison with the modal
analysis results demonstrates good agreement.

Figure 8: The flow x-velocity pattern around the fixed model at six different time instants
t = to + j · 0.05 s, (j = 0, . . . , 5). Figures are ordered from the left to the right.



Figure 9: Time evolution of x-displacement of point A for the FSI test (left) and it’s Fourier
transformation with dominant frequency f = 51Hz (right).

Figure 10: Time evolution of y-displacement of point A for the FSI test (left) and it’s Fourier
transformation with dominant frequency f = 51Hz (right).

5 Conclusion

The paper describes the formulation of the FSI problem demonstrated by the example of human
fold vibration in airflow. The mathematical model is derived and then the numerical algorithm
based on FEM and the ALE method is presented to simulate the behaviour of the coupled system.
The developed numerical schemes were implemented in an own program, which is able to handle
complex geometries. In the end the each part of the solver was tested by simply tests, which verifies
it’s basic functionality in the interaction problems.
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