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Abstrakt 
Tato práce se zabývá porovnáním dvou hybridních kompozitových trubek vyrobených 
metodou navíjení se stejnou základní skladbou stěny. Druhá trubka navíc obsahuje jednu 
tlumící vrstvu. Zásadní otázkou je, jak velký vliv má tato vrstva na statické a dynamické 
vlastnosti. Cílem této práce je srovnání experimentálně získaných vlastností s analyticky 
vypočtenými a prezentace výsledků plynoucích z tohoto srovnání. 
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1. Introduction 
This paper is focused on the effect of damping layers in a composite structure. Motivation for 
implementation of the damping layers is mainly in milling machine tools. Several 
technologies are available to made carbon-composite profiles, one of the best for tubes or 
beams is the filament winding technology. These works consist of two tubes comparison, the 
first one is just carbon-epoxy and the second one is a carbon-epoxy with an extra damping 
layer from additional material. One of the basic questions is: Could analytical model of 
dynamic properties be used for composite materials? Could be Timoshenko or Bernoulli 
model used for „long“ carbon beams? 

2. Static properties 
Basic parameters for composite profiles are bending and shear stiffness. Several methods are 
available to compute these parameters for a wound carbon-epoxy profile. The classical 
laminar theory was used for each layer see Figure 1 and parameters of unidirectional layer 
were computed by rule of mixture. Stiffness of the profile is just sum of the stiffness of the 
layers. 
 

 
Figure 1. Computation model of wound layer 

 
Shear stiffness of layer 
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and bending stiffness of layer 
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Table 1. – Layup of the tube 

Layup 
material volume of fibers thickness h [mm] angle ∅∅∅∅ [°] 

HSC 60% 0,28 28,2 
HSC 60% 0,19 87,7 
DC xx 0,51 xx 

HSC 60% 0,19 87,8 
HSC 60% 0,71 0,0 
HSC 60% 0,33 32,7 

 
Table 2. – Computed properties 

Computed prop. DT AT 

with damping 1767⋅106 1387⋅103 

without damping 1676⋅106 1375⋅103 

2.1 Effect of the beam length 
Short or long beam? It is one of the most important things during the composite beams 
designing, when we talk about the static bending properties. The Bernoulli theory calculates 
deflection just as the bending loading. But by the Timoshenko theory, the deflection has two 
parts, the first is from the bending load and the second is from the shearing load.  
 
The deflection of free end for cantilever beam with force FZ at the free end by Timoshenko is 

 �� = 5 ∙ �� ∙ ��6 ∙ �� + �� ∙ ���  (3) 

and by Bernoulli is 

 �� = �� ∙ ��3 ∙ �� 		. (4) 

 

 
Figure 2. Coordinate system and loading of beam 



 
Figure 3. Ratio of displacement Timoshenko / Bernoulli of one end clamped beam 

 
 
As it is shown at the Figure 3, for both tubes the deflection starts to be equal around 0.3 
meters. For the tube 1.2 meters, the difference between the Bernoulli and Timoshenko theory 
is just 1.5% (0.6 meters for cantilever beam). Therefore, the Bernoulli theorem can be used 
without any problems as static approximation of deflection 

2.2 Experimental bending test 
The bending stiffness and bending strength were measured (with Bernoulli theorem) in a 
3-point bending test. Drawing with parameters of the test is in Figure 4. For the 3-point 
bending test with 1 meter between supports, the error between Bernoulli and Timoshenko is 
just 1.5% (refer to Figure 3). It could be looked at this case as a long beam. 
 
 

 
Figure 4. Bending 3-point test 

 
 
 



Figure 7 shows the linear dependence between stress and strain up to strength. Therefore the 
bending stiffness is constant through the whole range of loading. During the measurement of 
the strength of the tube without damping layer (DL), the strain gauge signal run out of the 
range (bounds ±5500mmmmm/m). Therefore, for this coupon only the force values were captured 
during the failure. For experiments, HBM Spider-8 strain gauge panel was used. 
 
Table 3. – Parameters of the tubes from measurement 

Measured prop. Ø d1 [mm] Ø d2 [mm] weight [kg/m] length [mm] (E*J) m 
with damping (vz2) 29,9 34,2 0,27 1200 1788⋅106 

without damping (vz1) 29,9 33,3 0,25 1200 1752⋅106 
 
Damping layer has changed the mechanism of failure, as it is shown in Figure 5 (delamination 
between tows) and Figure 6 (failure across the tows). 
 

 
Figure 5. Broken tube without damping layer 

 

 
Figure 6. Broken tube with damping layer 



Figure 7. Stress – Strain chart 
 

3. Dynamic properties 
Dynamic properties usually mean eigen-modes with corresponding natural frequencies and 
damping of each mode. For comparison of the tube’s properties, frequencies and damping 
defined by a relative damping ratio were selected. Both tubes were measured by experimental 
modal analysis (EMA).  

Table 4. – Natural frequencies of the tube without damping layer 

without damping - natural frequency [Hz] 
computation experiment 

Timoshenko Bernoulli Bernoulli EMA 
31 31 33 frequency br [%] 
193 196 204 203 0,172 
530 549 571 535 0,181 
1010 1075 1119 1026 0,252 
xx xx xx 1568 0,155 

1615 1777 1849 1649 0,291 
xx xx xx 1666 0,299 
xx xx xx 2054 0,161 

2324 2655 2763 2348 0,421 
 



Natural frequencies are compared with analytical method, as is shown in Table 4 and Table 5. 
For relative damping ratio was used viscose model of damping, but the measuring error is 
about 10-15%, so in damping properties is the differences between tubes negligible. It could 
be just a measuring error. More frequencies were measured by EMA in comparison with the 
computation. One of the reasons is that several mode-shapes obtained from the experiment, 
were not the bending modes. It could be torsion, wall vibrations or mixed modes. 
 
Table 5. – Natural frequencies of the tube with damping layer 

with damping - natural frequency [Hz] 
computation experiment 

Timoshenko Bernoulli Bernoulli EMA 
31 31 32 frequency br [%] 
194 197 198 200 0,228 
532 551 555 533 0,099 
1013 1081 1087 1009 0,229 
xx xx xx 1541 0,081 
xx xx xx 1617 0,362 

1618 1786 1797 1632 0,300 
xx xx xx 2017 0,211 

2324 2669 2685 2304 0,477 
 
 

 
Figure 8. Example of Transfer function and Coherence for one measuring point 

 
Under 100Hz, there is a problem with low coherence (not at all measuring points as huge as it 
shows in Figure 8). It is the purpose, why natural frequencies were not measured in that area.  
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It could be problem with natural frequency of supports or exciter. The first approximation of 
modal properties of supports is written as (5), but with very low stiffness the displacement 
could be larger than measuring range. 

4. Conclusion 
Bernoulli theorem suits well for static properties of long composite tube without demand on 
damping layer and Timoshenko theorem suits very well for modal properties. It is necessary 
to change the method of experimental modal analysis because main demand is for lower 
frequencies, where is problem with natural frequencies more often. 
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List of symbols 
HSC High Strength Carbon  
DC Damping Cork  
d1 internal diameter (mm) 
d2 outer diameter (mm) 
DT bending stiffness (N⋅mm2) 
(E*J)m measured bending stiffness (3-point test) (N⋅mm2) 
AT shear stiffness (N) 
A area of layer (mm2) 
FZ loading force (N) 
l length of cantilever beam (mm) 
L length of supported beam (mm) 
wT cantilever beam deflection by Timoshenko (mm) 
wB cantilever beam deflection by Bernoulli (mm) 
wwww natural frequency of support (Hz) 
k stiffness of support (N⋅m-1) 
br relative damping ratio (%) 
m part of weight of beam for the support (kg) ∅ winding angle of layer (each ± ∅ ) (°) 
h thickness of layer (mm) 
EA shear elastic parameter of layer (MPa) 
ED tensile elastic parameter of layer (MPa) 
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