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Abstrakt 

Teorie samobuzeného kmitání (chatteru) při obrábění, která byla formulována v 50. letech, 
předpokládá osamělou řeznou sílu. Předpoklad jedné řezné síly při nestabilním řezání je 
používán dodnes. V tomto článku bude čtenáři předložena hypotéza uvažující více řezných sil 
působících v nestabilním řezu při soustružení. Je zde představen nový model síly. Výpočet 
meze stability, stejně tak i přesnost predikce stabilních řezných podmínek, je ukázán na tomto 
modelu. Platnost hypotézy je ještě potřeba dokázat. Přípravy ověřovacích experimentů 
probíhají již přibližně rok a samotné experimenty začnou v tomto roce (2014). Hypotéza je 
založena na rozboru výsledků dříve provedených měření dynamických sil jak českých, tak 
zahraničních autorů. 
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1. Significance of dynamic forces in machining 

In general, dynamic forces are understood as forces variable in time. They include for 
example forces exciting natural vibrations or forced vibrations. The machining theory 
primarily focuses just on static forces acting on the cutting process. In this research paper, 
static forces are understood as forces existing in stable cutting, which is always the objective 
in practice. However, there are cases of unstable cutting, where the cutting process itself 
modulates the originally static components of the cutting force (or cutting forces) in feedback 
loop to forces periodically variable in time, and therefore dynamic. Chatter arises. Only the 
dynamic component of cutting force affects unstable cutting. Unstable cutting occurs in all 
metal-cutting technologies, from lathe-turning, milling to grinding. It occurs both in roughing 
and in finishing. Instability of cutting processes is manifested in particular by waviness of the 
machined surface due to vibrations between the cutting tool and the workpiece. This produces 
unpleasant noise. Amplitudes of vibrations often reach high levels. Cutting edges are thus at a 
risk of damage. As it is not a desirable phenomenon in practice, it is necessary to know the 
means for suppressing it. The theory of machining stability (or chatter) is very well 
elaborated, including practical tools that can be used to eliminate the existing chatter. For the 
beginnings refer to [1] and [2]. For later studies see for example [3], [10], [11] and many 
others. Good knowledge of the stability limit enables technologists to optimize (increase) 
cutting performance. The stability diagram depicted in the upper part of Fig. 1 will be used for 
illustration. Stable depth of cut is shown on the vertical axis. Revolutions of the cutting tool 
(milling machines) or of the spindle with a workpiece (lathes) are shown on the horizontal 
axis. The grey field represents unstable cutting conditions under which chatter arises. The 
amplitude of the chatter increases during the cutting process. The white field represents stable 
cutting conditions, depth of cut and workpiece revolutions or tool revolutions, or more 
specifically cutting speed. After it arises, chatter dampens in this field. The boundary between 
these two areas is called chatter stability limit, which is defined by constant chatter amplitude. 



It is evident from the graph that stable depth of cut changes considerably with revolutions. In 
places where gaps between lobes are large, i.e. in the area of higher revolutions, it is possible 
to choose higher stable depth of cut, without chatter arising. See e.g. field A. The arrow in 
field A shows the so-called stable revolutions. These can be used for milling. The left part of 
the graph applies to turning. The gaps between lobes are already narrow. Consequently, 
instead of identifying stable revolutions, variation of cutting speed (revolutions) is used as one 
way how to suppress chatter. The area of the lowest revolutions in the stability diagram is of 
special significance for difficult-to-cut materials. As can be seen in the graph, lobes recede 
upwards and the stable area widens. It is a consequence of the so-called process damping, 
which, under certain conditions, acts on the cutting process. Increasing the stability limit at 
low cutting speeds allows us to use high, stable depths of cut, and leads to an increase in 
cutting performance of difficult-to-cut materials. This effect is otherwise difficult to achieve. 
An additional benefit is a significant extension of cutting tool lifetime due to a decrease in 
cutting speed as well as the possibility of using HSS PM tools with an advantage. This applies 
to both turning and milling. A more detailed explanation is beyond the scope of this paper. 
Therefore, we refer to the literature in [5], [6], [7], [8] and [9]. The curve of chatter frequency 
can be seen in the bottom part of the graph. The frequency also changes with revolutions. 
Based on the step changes, stable revolutions can be identified. As can be seen, stable 
revolutions make up a certain series. A technologist has the possibility of choosing optimal 
stable cutting speeds (revolutions) for various materials and tools. The diagram for specific 
cases can be obtained by a calculation based on measured transfer function in the place of the 
tool (for milling) or of the workpiece (for turning). The procedure for calculating the diagram 
is explained for example in paper [22]. 

Fig. 1. Stability lobe diagram. Prediction of stable cutting conditions. 
 
The values of "stable revolutions" markedly depend on eigenfrequencies of the decisive 
vibrating system, on the machine-tool-workpiece system in general, and also on some 
technological parameters, which have not been considered in the calculation so far. 
The depicted stability diagram can be a good lead for a technologist in predicting stable 
cutting conditions as well as in optimizing cutting performance under given conditions. 



Sufficient accuracy of the diagram is, however, an important prerequisite. The stability limit 
in turning operations has, under certain cutting conditions, a specific characteristic in the low 
cutting speed region and it differs from stability diagrams obtained by calculation. The 
following chapter will examine this topic in more detail. 

2. A linear model of dynamic cutting force 

The cutting force model used by Poláček [1] for calculating stability was very simplified in 
order to obtain a simple, comprehensible and practically useful formula for quantifying the 
stability limit. It has the following form: 

 
     dynstat

tj
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 (1) 
 
Here b is width of cut or depth of cut, Yo denotes amplitude of the waves left by the vibrating 
tool on the machined surface during the previous revolution, Yi is amplitude of vibration 
between the workpiece and the tool. hm denotes difference in centre lines between surface 
waves Yo(t) and Yi(t). The symbol K is a specific cutting force, ω denotes angular frequency 
of vibration, Fstat is a static component of total Force F(t) and Fdyn is a dynamic component of 
the total force. 
The total force F(t) is a component of the cutting force acting in the direction of the normal Y 
to the machined surface. The tangential component of the force has not been considered in the 
force model. A linear model was used for the complex dynamic force (phasor): 
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while at the stability limit, it applies that: 

 
j

io

io

eYY

YY





 (3) 
 
The symbol ε in equation (3) expresses the phase between waves on the workpiece and tool 
vibrations. Using these equations, a formula can be deduced for quantifying the lowest 
stability limit for turning operations in the following form: 
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where: 

max
oG ... is the extreme of the negative part of the real component of transfer function, 

calculated using direction cosines in the direction of the normal [22]. The transfer function 
expresses dynamic compliance of the vibrating system and can be obtained by measurement. 
The Go

max value depends on the static stiffness of the machine's vibrating system and on the 
damping of this system, i.e. on the structural parameters of the whole machine tool structure. 
If this value is obtained by measurement, its uncertainty is very small. The min

limb  value 
according to (4) is the minimum value of the stability limit in the stability diagram. See Fig. 1. 
The uncertainty of the specific cutting force coefficients K value is much larger. Therefore, it 
is also recommended that the min

limb  should be validated when running dynamic machine tests. 
By doing this, we can determine the real K value under given cutting dynamic conditions that 
may be influenced e.g. by the geometry of the tool. 
Equation (2) can be depicted under conditions (3) in complex plane by phasors. See Fig. 2. 
The force Fdi has the phase 180° relative to Yi. Considering the condition of stability (3), the 



force Fdo has the phase ε relative to Yi. As ε can change within the interval (0 – 360°), the 
phasor Fdo rotates around the centre S. Its end point moves along the circle. The centre of the 
circle lies at the real axis. 

 
Fig. 2. Forces Fdyn, Fdo, Fdi from the Eq. (2) depicted in complex plane for t=0. 

 
Equation (4) has been used for a number of years for a dynamic test of machine tool structure, 
the aim of which is to identify weak points of the structure. When using the equation for lobe 
calculation (milling in Fig. 1) and also when determining the stability limit in turning 
difficult-to-cut materials in the low cutting speed region, the predicted (calculated) stability 
limit deviates from the real stability limit. In the next chapter, we will focus only on turning at 
low cutting speeds, where the deviations are quite considerable. 

3. Complex dynamic forces 

In the 1960s, with the support of CIRP, Jiří Tlustý organized first research into dynamic 
forces acting on the cutting process during turning. The idea for the project was provided by 
the researchers of the Institute of Machine Tools and Machining in Prague, especially by 
Miloš Poláček. Several university laboratories in Europe and later in the USA collaborated on 
the project. See [12] and [13]. The proposed model of dynamic forces assumed only one 
dynamic cutting force acting on the cutting process in turning. Contrary to the above-
mentioned Poláček's model of force, it was assumed that the tangential component of cutting 
force also contributes to the dynamics of the process. The total cutting force was therefore 
broken down into two mutually perpendicular components FN (component perpendicular to 
the machined surface) and FT (component tangential to the machined surface). Dynamic 
forces were expressed by the following equations: 
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The coefficients Kdi, Kdo, Kci and Kco are dynamic coefficients of the cutting force 
components FN and FT, corresponding to the dynamic stiffness of the cutting process. It was 
assumed that the coefficients and thus also forces were complex. The indices “d” and “c” 
denote “direct” and “cross” directions of the action of dynamic force components Fdi and Fdo 
or Fci and Fco. The direction “direct” corresponds to the direction of the normal to the 
machined surface. The direction “cross” corresponds to the transversal or tangential direction 
to the normal. The indices “i” and “o” denote “inner” and “outer” modulation of the 



components Fdi and Fdo or Fci and Fco by tool vibrations or by waves on the workpiece surface. 
Yo and Yi have been defined earlier. 
The forces in the first equation (5) for FN are shown in Fig. 3. The force Fdi has the phase ψdi 
relative to Yi and the centre of the circle does not lie on a real axis. Similarly to equation (2), 
it applies that by changing the phase ε, the end point of the force Fdo moves along the circle, 
Fdi continues permanently in the direction of the circle centre and the end point FN also moves 
along the circle. The same properties apply to forces in the second equation (5), which can be 
depicted analogously. 

 
Fig. 3. Equation (5) for the thrust force FN depicted in the complex plane. 

 
It follows from the results of the research into dynamic forces that the coefficients as well as 
dynamic forces (components) are complex values and real and imaginary coefficient 
components depend on cutting speed. Using the results to calculate the phase dependences on 
the cutting speed of the components Fdi and Fdo or Fci and Fco, we discover that the phases of 
these forces, relative to the tool vibration Yi, are different. See Fig. 4. Similar data was 
published by Rao [15] as well as by Goel [14]. It means that the resultant forces FN and FT 
have a mutual phase too. 

 
Fig. 4. A change in phases of the direct and tangential force compoments Fdi and Fci. 

Compiled after [12].  
 



If we use this data and calculate stability limit relative to cutting speed for the chosen values 
of the stiffness “k” and damping “ξ“ of a vibrating system with one degree of freedom (these 
values will not be influenced by the form of the stability limit curve), we discover that there is 
a considerable drop in the stability limit curve. See Fig. 5. This characteristic of the stability 
limit differs considerably from the results commonly modelled so far, depicted already in Fig. 
1. It is necessary to highlight that the model (5) is already capable of expressing this curve in 
some way, but it still only works with one cutting force in the cutting process or with its two 
components. This is in contrast to the measurement result, which proved that forces are 
complex with various phases relative to the vibration of the tool. The dependence of the 
stability limit according to Fig.5 was verified independently by machining tests, which can be 
found in a number of studies, e.g. in [14] to [21]. Some chosen examples are shown in Fig. 6. 

 
Fig. 5. Limit of stability for turning, calculated using the data published in [12]. 

 

 
Fig. 6. Stability curves measured by machining tests. Data compiled after [10], [11], [13] and [17].

 

4. New model of dynamic forces 

The fact that the dynamic forces FN, FT are mutually phase shifted has two consequences. 
Firstly, the forces are not components of one dynamic force, but must be understood as 
independently acting forces. Secondly, some other dynamic forces must act on the cutting 
process. It is especially the damping process force as well as the damping force caused by tool 
wear. We consider these forces as complex too, i.e. they have a certain phase against FN or FT 
dependent on the cutting speed, which produces a phase shift of FN or FT against Yi as well as 
the discussed decline in stability. Based on the previous consideration, we assume a new 
model in the following form: 
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The model (6) now contains further force components FdDamping, FcDamping and FdWear, FcWear. 
While FdDamping and FcDamping are a normal and a tangential component of the damping force of 
the cutting process (process damping), FdWear and FcWear are damping forces caused by tool 
wear. The other indices have been defined earlier. The forces FN and FT are mutually 
perpendicular and have generally different magnitudes and phases. We assume that if the 
forces FDamping and FWear are correctly identified in both directions, the new model (6) will be a 
better basis for calculating stability limit for the low cutting speed region than the existing 
models. Stability limit calculated using the model (6) will be defined both by conditions (3) 
and other technological parameters that influence the boundary between stability and 
instability. Such a parameter is for example cutting speed. See Fig. 1. We assume the 
coefficients Kd and Kc in complex form, so for forces in equations (6), using (3), the 
following can be written: 
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where: 

cicodido KKKK ,,, ...are absolute values of complex coefficients. We used the shortened 

designation D or W instead of the indices Damping or Wear in the equations. 

5. Experiment 

The aim of the experiment is to measure the vectors of the dynamic components Fdi, Fdo, Fci, 
Fco, FdD, FdW, FcD and FcW and their dependences on cutting speed. These components will be 
determined from circles that the end points of the vectors FN and FT circumscribe during a 
step change of the phase as shown in Fig. 3 and Fig. 4. A change of the phase is not possible 
in naturally induced unstable machining. In order to create waves on the machined surface, 
simulated tool vibration in a direction perpendicular to the machined surface will be used. In 
order to determine the forces FD and FW, process damping and damping caused by wear, it 
will be necessary to gradually set up conditions under which these forces will be eliminated, 
or suppressed to the minimum. Equations (6), or also (7) and (8), will then express different 
situations in which it will be possible to identify the forces FD and FW. The experimental set-
up of the equipment is shown in Fig. 7. 



Fig. 7. Experimental set-up. 
 

6. Conclusion 

In this paper, we provided an outline of our present research. The analysis of the older data 
showed some new phase relations of the dynamic forces acting during unstable turning 
operations. These phase relations show us that it is not just one dynamic force that acts on the 
cutting process in turning, but multiple forces. Based on this, a new model of dynamic forces 
has been suggested. A development of the model depends on successful experimental 
identification of all the assumed dynamic forces. 
 
 
List of symbols 

K specific cutting coefficient (MPa) 
ε  phase between waves on the workpiece and tool vibrations (rad) 
ω angular frequency (Hz) 
FT tangent force (N) 
FN normal force (N) 
b width of cut (mm) 
hm difference in centre lines between surface waves Yo(t) and Yi(t) (mm) 
Yo amplitude of the waves on surface during the previous revolution (mm) 
Yi amplitude of vibration between the workpiece and the tool (mm) 

max
oG  the extreme of the negative part of the real component of transfer function (mm/N) 

Kdo, Kdi, Kco, Kci dynamic coefficients of the cutting force (MPa) 
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