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Abstract 

This article presents a method of implementation genetic algorithm in CUDA. Used algorithm 

operat on a large population and a complex genotype, so that it exceeded the size of the cache 

memory. It is not completely transferred to the graphics card. It consists of modules that run 

on the CPU and are synchronized through it. Calculations were based on weak, but widely 

available graphics cards to test the ability of acceleration algorithms at low cost. 
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1. Introduction  

In my work I tested the possibility of using CUDA technology as a tool for accelerating 

the calculation of genetic algorithms with large populations and complex genotypes. In many 

publications sought to test the possibility of using graphics cards to accelerate the calculation 

of genetic algorithms. They amounted to accelerate the evaluation of individuals element of 

the population [1] or processing of the entire genetic algorithm on the GPU [2]. Before the 

rise of CUDA technology, the use of graphics cards to calculate these algorithms was 

relatively difficult [3-5]. Elements had to be present in the form of textures. Genetic 

operations were complicated in the implementation because of unnatural data record. The 

situation changed after the technology CUDA. It has allowed direct access to all cores and 

easy to use graphics cards to advanced numerical calculations. There are many publications 

on the implementation of genetic algorithms In CUDA technology [6-9]. The best results 

were achieved in a multi-population algorithms because of possibility to use blocks as 

"islands" for each population and shared memory to store these populations. This approach 

eliminates the problem of the lack of synchronization between the blocks. However, it brings 

some inconvenience. Shared memory is relatively small (16 KB in the GT200 architecture), 

which place restrictions on the size of the population, or forced to put it in the global memory 

which is much slower. 

In my work I have tried to concentrate on the possibilities of use the graphics card to 

speed up the calculations one-population genetic algorithm with a large population (greater 

than the size of the shared memory). I conducted calculations on the GT540M to test the 

capabilities of cheaper mobile graphics accelerators for use in numeric applications. 

2. Genetic algorithms 

Genetic algorithms are algorithms allowing for search area of alternative solutions to find 

the most optimal of them. The idea of genetic algorithms is derived from Darwin's theory of 

evolution, where the best individual replacing individual weaker adapted. Each individual has 

its chromosome, which is actually coded, in the form of characters (genes), point of the 



problem domain. Currently, the most commonly used is the binary notation. Group creates a 

population of individuals [Fig. 1.]. 

 

Fig. 1. Population. Each individual has a different chromosome. 
 

Individuals, as well as in the environment, may crossover among themselves to form next 

generations. The chance to participate in reproduction, that is, creation of an individual in the 

new population is directly proportional to the adaptation (value of fitness function which 

determining how much the result satisfies our requirements). During the reproduction take 

place crossover (exchange fragments of genotypes) and sporadic mutations (random changes 

in the gene). Then are selected the best individuals from the two populations, or only 

individuals from the intermediate population. Diagram of a simple genetic algorithm is shown 

in [Fig. 2.]. 



 

Fig. 2. The working principle of a genetic algorithm 

3. CUDA technology and CUDA C language 

In 2007 the NVIDIA company introduced the CUDA technology. It allowed developers 

direct access to dozens or even hundreds of cores placed on graphics cards and therefore easy 

to perform many advanced numerical computation on them [10]. Cores called threads are 

grouped into blocks that create grids. Both blocks and threads can be presented in one, two 

and three-dimensional area [Fig. 3.].Shared memory is a fast memory type of CASH. It is 

assigned to a specific block, and only the threads inside it have access to it. It is characterized 



by high speed, but small size compared to the global memory (as it was written in the 

introduction in GT200 architecture it is 16 KB).  

CUDA C language brings to the classic C separation of functions into three types: 

 host: functions called by the CPU and executed on the CPU, 

 device: functions called by the GPU and implemented on the GPU, 

 global: functions called by the CPU but the GPU performed, require the declaration of 

number of blocks and threads involved in the processing. 
 

 

 

 

Fig. 3. Division GPU on grids, blocks and threads. 

4. Projekt 

In my work I have tried to concentrate on the possibilities of implementation a genetic 

algorithm with a large population and extensive genotype. The population can not be kept in 

the shared memory but only the portions, on which we operate at a time. The CUDA 

architecture does not have a built-in blocks synchronization, which brings with it 

synchronization problem after each step of the algorithm. There are three solutions: 

 limit calculations to a single block, 

 create a programming synchronization, 

 synchronization management by the CPU. 

In the first case there is a large reduction in the number of threads actively involved in the 

processing. This is due to the restrictions on the maximum number of cores per block in 

different architectures, for example, at GeForce 580 which is representative of Fermi 

architecture and have 512 cores involved in the performance of the algorithm could take only 

the 32 of them. 



Software synchronization is relatively difficult to implement. It is based on observation 

and overwritten by each of the blocks the state array in the globa memory. In this way, they 

could check the status of the others and at the same time inform them of their own progress. 

This method, however, increases the load on the graphics card (especially the number of read 

operations performed on the global memory). Another problem is the inability to change the 

number of blocks and threads participating in the calculation of the kernel function (they can 

not be optimally chosen for each of the elements of the algorithm). Although this method will 

be verified in further work due to a suspicion of increase in productivity caused by resignation 

from synchronization by the CPU. 

Management by CPU consists of division algorithm after which it is necessary to 

synchronize it. Each component is coded in the form of an independent kernel functions. 

After the kernel function is called cudaDeviceSynchronize function that causes suspend 

execution the main thread of the program until the end of the calculations on the graphics 

card. Then is called the next kernel function. Unfortunately, this method is largely impossible 

parallel execution of the application on the main thread, and at the same time on the video 

card, but it is not required in this type of applications. 

In my work I used the test function of 30 variables, in which I was looking for a global 

maximum. I used division shown on [Fig. 4.]. 

 

 

 

Fig. 4. A genetic algorithm used in the test 

This scheme includes only a part of the program execute on the graphics card. Blocks 

represent a single kernel functions, between which the CPU synchronizes and sets the 

appropriate number of blocks and threads. In the case of operations performed on genes of all 

individuals is set the number of threads equal to the length of the genotype and the number of 

blocks equal to the number of individuals in the population. This simplifies the construction 



of the code and allows to avoid, in some places, the need of a complicated calculation of area 

of population for which the thread is responsible. In other cases is set the maximum effective 

number of threads and blocks (64 threads, which is the optimal number of threads per block 

[9]). [Table 1.] shows this division. 

 

 
Table 1. - Number of allocated threads and blocks depending on the function of kernel 

Division of threads Topic 

Number of threads = length genotype 

Number of blocks = size of the population 

Generate a random number sequences 

Generate initial population 

Crossover operation 

Mutation operation 

Number of threads = 64 

Number of blocks = (number of threads 

involved in the processing + 1) / 64 

Evaluation of individuals 

Generate sub-population 

Generate new population 

 

5. Results 

The results are quite satisfactory. There was a significant increase of acceleration of a 

genetic algorithm calculation in comparison with the calculation performed on the processor 

[Tabela 2]. In the paper was taken into account the time needed for memory allocation and 

copying of data between the CPU and GPU because in many programs it is part greatly 

affects the speed of the algorithm. 
 

Table 2. - The results obtained on the CPU and selected GPUs 

Procesor (Intel Core i5-2430M) GeForce GT 540M GeForce 460 GTX 

17560ms 5651ms 1926ms 
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