
Software Application for Adaptive Identification and Controller
Tuning

Bc. Peter Mark Beneš

Supervisor: Doc. Ing. Ivo Bukovský Ph.D.

Abstract
This paper introduces a new software for adaptive identification and controller tuning, with
the use of higher-order neural units and gradient descent based techniques (including back-
propagation through time). The software allows the user to load real process data offline and
to identify the plant or control loop as a whole. Furthermore the software experimentally
investigates potentials for optimisation of the control loop response, via a non-linear adaptive
state-feedback controller. The software is aimed as a quick tool for students, scholars and
practitioners who wish to check potentials for optimisation of their control loop (utilising
available process data and non-linear controller).

Keywords
software application, real-data based identification and control, real time recurrent learning,
back-propagation through time, gradient descent, dynamic linear neural unit, dynamic
quadratic neural unit, adaptive feedback controller, Neuro-Controller, SISO

1. Introduction

The work of my research together with the software application presented in this paper is
motivated by the development of Linear and Quadratic Neural Units (LNUs) and (QNUs)
respectively [1][2]. So far such neural units feature promising theoretical studies for adaptive
identification and control [9]–[11] along with successful real implementation in the Automatic
Control laboratory at CVUT [11] as recalled in Figure 1.

Figure 1: Demonstration of Quadratic Neural Unit as a controller on the Bathyscaphe
System (picture adopted from [11]), real implementation of QNU with gradient
descent was superior to PID control.

Here we can see that real implementation of the Neuro-controller [11] is indeed the most
desirable controller for the given process data, following more closely to the desired
behaviour of the system than the linearly limited PID controller. Given this, further
motivation arises in applying and extending this algorithm for application to other real
engineering processes.
The designed algorithms that I implemented, furthermore the software that I programmed, are
based on the above algorithms and referenced works. It is an attempt to provide users with a
more unified tool where real data can be loaded and the user can see what could be the
potentials for further optimization of a control loop by this gradient descent based approaches
[1]–[11].
Of course, there might be difference between simulation and real functioning of the
implemented controller (e.g. as observed in [11]), nevertheless the developed software is
aimed to indicate the potentials for optimisation of the process control.

2. Description of Implemented Algorithms
The background behind the adaptive control utilised in this software application is the well-
known Gradient Descent (GD) method applied to dynamic adaptive models. The applied
learning rule for dynamic neural units is based on incremental and batch training techniques.
The incremental (sample-by-sample) adaptation is based on Real Time Recurrent Learning
(RTRL) technique [3]. The batch adaptation is based on modification of Back-Propagation
Through Time (BPTT) technique [4] implemented as a combination of RTRL with the famous
Levenberg-Marquardt algorithm as shown in [8].

In the implemented software, both these learning techniques (RTRL and BPTT) can be
independently used, or combined to adaptively identify a system, i.e. either a plant or even a
whole control loop, and to adaptively tune the controller to demonstrate potentials for further
optimisation of the control process.

So far, the whole application has been designed for considering only single-input single-
output systems.

2.1 Gradient Descent Adaptation
The Gradient Descent algorithm is one of the most fundamental learning rules behind neural
units such as LNU and QNU (e.g. [1][2]) used throughout the program. This method is
suitable for both online and offline tuning of static and, more importantly for this paper,
dynamic models. The essence of this algorithm is to learn the model of the plant, however it
can also be utilised in tuning a controller such as the neuron type controller (Neuro-controller)
[9]–[11].

Firstly we introduce the general form of the LNU respectively QNU, as expressed via the
following polynomial forms;

 0 1 1 2
0

.
n

i i n n
i

y x w w x w x w x
=

= = + + + =∑ w.x (1)

where w is updatable vector of neural weights and x is vector of inputs in the case of a purely
static model, or as here also previous outputs corresponding to a dynamic model. Similarly,
the quadratic neural unit can be expressed as follows;

 2
, 0,0 0 0 0,1 0 1 ,

0 0
...

n n

i j i j n n n
i j

y x x w w x x w x x w x
= =

= = + + + =∑∑ rowx.colW (2)

Adopting the long vector notation according to [6][7], QNU can be expressed as;

 []

0,0

0,1
0 0 0 1 0 2

,

... .
:n n

n n

w
w

y x x x x x x x x

w

 
 
 = =
 
 
 

rowx.colW , (3)

where rowx and colW are long-vector representations of the input vector and weight matrix
of the quadratic neural unit in general. The goal behind this algorithm is adaptation of neural
weights, this is the key behind the learning process of the model. This is achieved via
modifications of the fundamental gradient descent formula for the LNU and QNU
respectively as follows;

 1
(). ().i i

i

y kw w e k
w

µ+

∂
= +

∂
 (4)

where µ represents the learning rate of the weight adaptation, e(k) represents current error

between real and calculated output. The final term ()

i

y k
w

∂
∂

 corresponds to the partial

derivatives of the neural unit output, respective to each neural weight. For understanding in
how this partial derivative is computed we shall derive it in the following section. As for the
QNU, the Gradient Descent algorithm is as follows;

 (1)(k +1) () . (). y kk e kµ ∂ +
= +

∂
colW colW

colW
 (5)

2.2 Adaptation of Dynamic Linear Neural Units
If we say that our linear neural unit will be dynamic (with feedbacks from output), we can
choose our vector x to feed previous samples of output to input, for example,

1
[]

[1]
[2]

[]
[1]

y k
y k

x
y k

u k
u k

 
 
 
 −

=  − 
 
 

− 

where ny and nu are numbers of corresponding components of input vector. In such case we
will have 6 weights, corresponding to each of the elements of input vector x. We can thus
expand equation (4) in the following manner.

 0 1 2 5
(1) (. [] . [1] [1])

i i

y k w w y k w y k w u k
w w

∂ + ∂
= + + − + + −

∂ ∂
 (6)

Thus for our dynamic model equation, all terms denoted as y are previous output values, the
total amount of which is ny. These previous output values of y, were calculated using the
same model equation at different sampling times of k, thus here too we have a function of the
previous weights. We thus find that on differentiation of these individual terms we will utilise
the product rule of differentiation, which yields the following matrix.

}ny

}nu

1 2 3
0 0 0

1 2 3
1 1 1 1

1
2

3

4

5

(1) () (1) (2)1 . . .

(1) () (1) (2)[] . . .

(1) ([1] .
(1)

(1)

(1)

(1)

o

i

y k y k y k y kw w w
w w w w

y k y k y k y ky k w w w
w w w w

y k y ky k w
wy k

y kw
w

y k
w

y k
w

∂ + ∂ ∂ − ∂ − 
 ∂ ∂ ∂ ∂ 
∂ + ∂ ∂ − ∂ − 
 ∂ ∂ ∂ ∂ 
 ∂ + ∂

− ∂∂ +  = =
 ∂ +∂
 ∂ 
 ∂ +
 

∂ 
 ∂ +
 

∂ 

2 3
2 2 2

1 2 3
3 3 3

1 2 3
4 4 4

1 2 3
5 5 5

) (1) (2). .
, 0,1,

() (1) (2)[2] . . .

() (1) (2)[] . . .

() (1) (2)[1] . . .

y k y kw w
w w w

i
y k y k y ky k w w w
w w w

y k y k y ku k w w w
w w w

y k y k y ku k w w w
w w w

 
 
 
 
 
 
 ∂ − ∂ −
 ∂ ∂ ∂  =
 ∂ ∂ − ∂ −

− ∂ ∂ ∂ 
 ∂ ∂ − ∂ −
 

∂ ∂ ∂ 
 ∂ ∂ − ∂ −

− 
∂ ∂ ∂ 

2..5 (7)

This derivation can thus be analogically applied to all other various other types of model
polynomial equations. In the sense of the plant identification algorithms used in this software,
it became apparent that a much simpler version of this derivation seemed to work better in the

various tested data, where by (1) .
i

y k
w

∂ +
=

∂
x This is perhaps due to the fact that all proceeding

terms of this partial differentiation are recurrently trained variables, which seem to somewhat
complicate the update of the weight training process. Another component of this algorithm,
necessary to mention is the learning rate µ, this plays a key role in the adaptation algorithm. It
essentially corresponds to the speed of learning for the neural unit, should µ be high, then so
too is the rate of learning for the neural model. Analogically setting µ to a smaller value
dictates slower learning for the model. This can be advantageous as the model is allowed to
process the learning more effectively ie; analogical to humans where the longer time is given
to learn, the more easily can a human remember the information. Thus through every
adaptation step k, the model is trained to represent the behaviour of the process for which its
data was provided.

Often we may find that for different process data it is better to normalise the learning rate
due to problems associated with instability during the learning of the neural units. In theory
[6], the fundamental normalisation of the learning rate is given as follows;

 𝜂 = µ
‖𝐫𝐨𝐰𝐱(k)‖22+ε

 (8)

where ‖𝐫𝐨𝐰𝐱(k)‖22 is the Euclidean norm of the vector rowx, furthermore ε represents a
normalisation constant, which is updatable over adaptation step k. However in this software it
was apparent that a more simplified version of this learning rate normalisation can be used as
follows;

(k) (k) 1T

µη =
+x x

 (9)

2.3 Adaptation of Dynamic Quadratic Neural Units

Adopting the long term notation for the QNU training [2][6][7], the above equation (3)
defines the QNU. For further definition as per equation (12) we must also distinguish the
following;

 Tcolx = rowx (10)

When looking at the already introduced equation of the gradient descent algorithm as per
equation (5), here we see that in this case the partial derivative is in terms of colW, In general
this partial derivative would thus be represented via the following matrix term;

2 2
1

0,0 0,0 0,0
0,0 2 2

1

0,1 0,2 0,1
0,1

2 2
1

, , ,
,

(.) ...

(.) ...(1) .
: : :

:
(.) ...

o o n

o o o

o o n

n n n n n n
n n

x x x x
w w w

w
x x x x

y k w w w
w

x x x x
w w w

w

 
 ∂ ∂ ∂ 
∂  ∂ ∂ ∂ ∂   ∂ ∂ ∂
∂ + ∂  ∂ ∂ ∂= =  ∂ ∂  
 
 ∂ ∂ ∂ ∂   ∂ ∂ ∂  ∂ 

rowx

rowxcolW. colW
colW

rowx












 (11)

In addition to this, the learning rate µ may be replaced via a normalized learning rate in aid of
better stability in certain applications of this model, as follows;

(k) (k) 1T

µη =
+colx colx

 (12)

2.4 Extension of Gradient Descent Method on the Neuro-Controller
To understand the mechanics behind the gradient descent algorithm, as applied to the Neuro-
Controller setup, we should first consider the control scheme (loop) as follows;

Figure 2: Control Scheme of the Neuro-Controller.

where ro is adaptable proportional gain. In Figure 2 as above, we see two main neural unit
blocks denoted w.x and v. ξ. In this control scheme block w.x refers to the plant identifier
(used to similarly to learn the behaviour for the given process data) and v. ξ. is thus the

Neuro-Controller used to manipulate the newly feed input into the neural model for control. In
this case the neural weight update would be dictated via the gradient descent algorithm in the
following way;

 1
(). ().i i

i

y kv v ereg k
v

µ+

∂
= +

∂
 (13)

where iv are adaptable neural weights of the Neuro-controller and ereg(k) is the error between
the desired value of the plant (denoted d) and the real plant output value at sample k. The most

crucial component behind equation (13) is hidden within the partial derivative ()

i

y k
v

∂
∂

, via

application of the chain rule we may derive the final form of this derivative for use in the
programming algorithm as;

.y x q
v v v
∂ ∂ ∂

= = −
∂ ∂ ∂

w w. (14)

where q
v
∂
∂

, corresponds to the partial derivatives from the Neuro-Controller equation with

respect to the updatable weights v. In order to understand computation of this partial
derivative we must define matrix ξ . For example as represented in Figure 2, we may define
as;

[]
[1]
[2]

[] []
[1] [1]
[2] [2]

y k
y k
y k

d k y k
d k y k
d k y k

ξ

 
 − 
 −

=  − 
 − − −
 

− − − 

 (15)

Thus for this case, the partial derivative with respect to the updatable Neuro-Controller

weights iv , yields that in fact .q
v

ξ∂
=

∂
Analogically this result was applied in the presented

software, where the length of previous results of y is adaptable via the edit entitled “nqy”
within the Neuro-Controller panel. Similarly too the length of previous samples for the
difference of desired to model output (d-y) is adaptable via the parameter nqe.

2.5 Real Time Recurrent Learning, Back-Propagation Through Time
Throughout this software there are two key methods of weight training or learning utilised.
These methods are known as Real Time Recurrent Learning [3] or shortly RTRL and Back-
Propagation Through Time [4], shortly BPTT. So far the gradient descent algorithm was
introduced above as per equation (4) for DLNU and equation (5) for DQNU. These equations
are in essence the Real Time Recurrent Learning, however what is key to distinguish is that
this only applies for dynamic adaptive models, where adaptation is achieved over sample by
sample.

Thus another approach for adaptive learning is to in fact train, rather than over each sample,
over a series of runs or epochs of the neural algorithm. The advantage of this is evident for
instance in noisy data. Here rather than learning with noise over sample by sample as in the
RTRL method, we can train over each run or “Batch” where by the main governing law

}nqy

}nqe

interests in training of the input and output for each run. This is thus referred too as Batch
training or furthermore Back-Propagation Through Time (BPTT). To understand this method
in more depth we must introduce a very key equation according to Levenberg-Marquardt
algorithm as follows

 11(.) .T

µ
−∆ = +w J.J J J.e . (16)

Here the weight update algorithm would thus be calculated as w=w+Δw. In equation (16) the
term I, is simply an identity matrix. J denotes the Jacobian matrix of derivatives for the model
polynomial equation. In our case for this software the partial derivative of the model

polynomial with respect to the adaptable weights w ie; ()

i

y k
w

∂
∂

, simply equals to x for DLNU

or in the sense of DQNU, colx. Thus an extension to equation (16) for batch training (BPTT)
would be for LNU as follows

 11(.) .T

µ
−∆ = +w x.x I x.e

and for QNU as follows;

 11(.) .T

µ
−∆ = +w colx.colx I colx.e (17)

3. Results

3.1 Designed Software

The presented software in this paper, was created via Python 2.6.2 programming language,
with use of the graphical interface library wxPython. The Interface features two distinctive
tabs on the main window, which refer to control of a plant (process) and furthermore control
for a Plant as part of a proportional control loop (P-Loop). It should be stressed that the
version presented in this paper is a prototype, with further developments to be added in the
close future.

Figure 3: Main Interface of Software – Option for only plant data.

The above figure (Figure 3) shows the current layout within the “Control of Plant Only”
window. Here the frame is split to 3 distinct panels. The first allows the user to check their
uploaded process data is in the path of the program via the “Check Loaded Data” button.
Following this is the “Plot Data” button, enabling the user to see a visualisation of their
uploaded process data. After the visualisation of the data is created, the user may require
resampling of the data, for the purpose of control. Thus an edit titled “Resampling” is featured
on the bottom of this first panel.

The following panels of this program are divided into “Plant Identification” and “State
Feedback Controller (Neuro-Controller)”. Here the user must fill in the learning rate for usage
of gradient descent algorithm and furthermore epochs. As the values of the learning rate and
number of epochs differ between the RTRL and BPTT methods, separate edits are placed for
each within each panel. There is also a feature for the user to define the length of the variables
used in the model polynomial equations for the respective controller, all of which is explained
under section 2 in “Description of Implemented Algorithms”.
Control may be calculated for the following options : DLNU Plant Identification with DLNU
Neuro-Controller, DLNU Plant Identification with DQNU Neuro-Controller, DQNU Plant
Identification with DLNU Neuro-Controller and DQNU Plant Identification with DQNU
Neuro-Controller. This thus gives the user the option to compare behaviour of the different
methods, furthermore allowing the user to tune for most optimal control to their process data.

Figure 4: Main Interface of Software – Option for data measured from control P-Loop.

An extension to this software is seen in the second tab under Figure 4. Here the Plant may be
introduced as part of a Proportionally Controlled loop shortly (P-Loop). The functions of this
panel are analogical to above. This panel proves good for such scheme as presented in the
Bathyscaphe results of the proceeding section.

3.2 Simulations Using the Designed Software

The results presented in this section are mainly based on a theoretical second-order plant, with
a pulsating signal for Input. However this software was also tested on a real process data,
which was that of the Bathyscaphe system. In the sense of the theoretical process the
following transfer function defined our example Plant;

 2

0.1()
3 2 1

sG s
s s
+

=
+ +

 (18)

Figure 5: Preview of loaded (process) data in a program (Data should be in same folder as

the Program, thus Check Loaded Data button may be utilised)

Figure 6: Plant Identification Using DLNU with RTRL Training mu=1, epochs 100, For

ny=5 and nu=5

Figure 7: Plant Identification Using DLNU with BPTT Training mu=1, epochs 100, For
ny=5 and nu=5

Here the DLNU with
RTRL, is Superimposed
showing that it exactly
identifies the plant data

Here the plot of sum of square
errors, shows how closely the
model is adapting to the real
plant data, furthermore the speed
of the adaptation

DLNU with BPTT. Good
identification with noisy
data.

Sum of square errors
decreases more quickly with
BPTT for same parameters

Figure 8: Plant Identification Using DQNU with RTRL Training mu=1, epochs 100, For

ny=5 and nu=5

Figure 9: Plant Identification Using DQNU with BPTT Training mu=1, epochs 100, For
ny=5 and nu=5

DQNU with RTRL.
Curves are superimposed
also showing exact plant
identification.

DQNU with RTRL.
Faster and further
reduction of sum of square
errors than DLNU

DQNU with BPTT. Faster
adaptation and good
identification with noisy data

Results of the Neuro-Controller Given the Previously Identified Plant (Process)

Figure 10: Neuro-Controller Using DQNU with RTRL Training mu=0.2, epochs 5, nqy=4 ,

nqe=4

Figure 11: Neuro-Controller Using DQNU with BPTT Training mu=0.1, epochs 100, nqy=4,
nqe=4

DQNU Neuro-Controller
with RTRL, follows shape
of desired closely.

DQNU Neuro-Controller
with RTRL, fast reduction
of sum of square errors.

DQNU Neuro-Controller
with BPTT, follows
shape of desired given
noisy data, however the
above is most desirable

Application on Bathyscaphe Data

Figure 12: Bathyscaphe Data- DQNU_RTRL Neuro-Controller Using DQNU_RTRL Plant
Identification (Control of Plant as P-Loop tab used)

Figure 13: DQNU_BPTT Neuro-Controller Using DQNU_BPTT Plant by designed program, there

are strong potentials for control optimization of the system.

DQNU Controller via BPTT, closer
following to desired output.

DQNU Neuro-Controller
with RTRL, follows
shape of desired
relatively well.

Results of the developed software in Figure 12 and Figure 13 of the system Bathyscaphe
indicate large potential for control optimization of its control loop, and indeed the
Bathyscaphe system had been (with the same real data and gradient-descent based principle)
optimized in [10] (Figure 1 above) and QNU controller was superior to PID and working in
the full range of output values.

4. Conclusions
As analysed in the results section of this paper we can see a direct reflection of several
theories presented in section 2. As seen in the plant identifications, with proper tuning of the
key parameters of the DQNU, we find that it can achieve faster adaptation and consequently
obtain a more precise model over the same epochs as the DLNU adaptation. Another
phenomenon witnessed was the smooth behaviour of the BPTT training method for noisy
data, which as mentioned in section 2, is due to the main governing law of this method
concerning the input and output of the neural unit over the epochs rather than over sample-by-
sample.

The essence of this software is to investigate adaptive control potentials for the process data;
it was found that all though the DLNU_RTRL Neuro-Controller with DLNU RTRL training,
provided an acceptable result, the DQNU with RTRL training, followed by a Neuro-controller
via. DQNU with RTRL, seemed to work best, as shown above. However as mentioned
previously in this paper, this result like all produced via this software is a tool for seeing the
potentials of control via gradient descent based algorithms, and thus should be checked with
the real system, whether such control is really possible for real application on the investigated
engineering process.

List of Used Symbols
μ- Learning Rate,
ξ- Input vector into Neuro-Controller
ε- Normalisation Constant
ro -Estimated gain of P-controller
η - Normalised Learning Rate

References

[1] Gupta, M.M., Liang, J. and Homma, N. [2003], “Static and Dynamic Neural
Networks: From Fundamentals to Advanced Theory,” IEEE Press and Wiley-
Interscience, published by John Wiley & Sons, Inc.

[2] Bukovsky, I., Bila, J., Gupta, M., M, Hou, Z-G., Homma, N.: “Foundation and
Classification of Nonconventional Neural Units and Paradigm of Nonsynaptic Neural
Interaction” in Discoveries and Breakthroughs in Cognitive Informatics and Natural
Intelligence series Advances in Cognitive Informatics and Natural Intelligence
(ACINI), ed. Y. Wang, IGI Publishing, Hershey PA, USA, Nov.. 2010. ISBN: 978-
1-60566-902-1, pp.508-523

[3] R. J. Williams and D. Zipser, “A learning algorithm for continually running fully
recurrent neural networks,” Neural Computation, vol. 1, pp. 270–280, 1989.

[4] P. J.Werbos, “Backpropagation through time: What it is and how to do it,” Proc.
IEEE, vol. 78, no. 10, pp. 1550–1560, Oct. 1990.

[5] B. Widrow and S. D. Stearns, Adaptive Signal Processing. Englewood Cliffs, NJ:
Prentice-Hall, 1985.

[6] Bukovsky, I., Ichiji, K., Homma, N., Yoshizawa, M.: “Testing Potentials of Dynamic
Quadratic Neural Unit for Prediction of Lung Motion during Respiration for

Tracking Radiation Therapy”, WCCI 2010, IEEE Int. Joint. Conf. on Neural
Networks IJCNN, Barcelona, Spain, 2010.

[7] Bukovsky, I., Rodriguez, R., Bila, J., Homma, N.: “Prospects of Gradient Methods
for Nonlinear Control”, Strojárstvo Extra, MEDIA/ST, s.r.o. publishing house,
2012, ISSN 1335-2938.

[8] Gupta, M., M., Bukovsky, I., Homma, N. , Solo M. G. A., Hou Z.-G.: “Fundamentals
of Higher Order Neural Networks for Modeling and Simulation“, in Artificial Higher
Order Neural Networks for Modeling and Simulation, ed. M. Zhang, IGI Global,
2012.

[9] Bukovsky I., S. Redlapalli and M. M. Gupta : Quadratic and Cubic Neural Units for
Identification and Fast State Feedback Control of Unknown Non-Linear
Dynamic Systems, Fourth International Symposium on Uncertainty Modeling and
Analysis ISUMA 2003, IEEE Computer Society, 2003, Maryland USA, ISBN 0-
7695-1997-0, p.p.330-334

[10] Rodriguez , R., Bukovsky, I., Homma, N.: “Potentials of Quadratic Neural Unit for
Applications”, in International Journal of Software Science and Computational
Intelligence (IJSSCI) ,vol 3, issue 3, IGI Global, Publishing, Hershey PA, USA ISSN

[11] Ladislav Smetana: Nonlinear Neuro-Controller for Automatic Control Laboratory
System, Master’s Thesis (sup. Ivo Bukovsky), Czech Tech. Univ. in Prague, 2008

