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Abstract  
This paper introduces a new software for adaptive identification and controller tuning, with 
the use of higher-order neural units and gradient descent based techniques (including back- 
propagation through time). The software allows the user to load real process data offline and 
to identify the plant or control loop as a whole. Furthermore the software experimentally 
investigates potentials for optimisation of the control loop response, via a non-linear adaptive 
state-feedback controller. The software is aimed as a quick tool for students, scholars and 
practitioners who wish to check potentials for optimisation of their control loop (utilising 
available process data and non-linear controller). 
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1. Introduction 

The work of my research together with the software application presented in this paper is 
motivated by the development of Linear and Quadratic Neural Units (LNUs) and (QNUs) 
respectively [1][2]. So far such neural units feature promising theoretical studies for adaptive 
identification and control [9]–[11] along with successful real implementation in the Automatic 
Control laboratory at CVUT [11] as recalled in Figure 1. 

Figure 1: Demonstration of Quadratic Neural Unit as a controller on the Bathyscaphe 
System (picture adopted from [11]), real implementation of QNU with gradient 
descent was superior to PID control. 



Here we can see that real implementation of the Neuro-controller [11] is indeed the most 
desirable controller for the given process data, following more closely to the desired 
behaviour of the system than the linearly limited PID controller. Given this, further 
motivation arises in applying and extending this algorithm for application to other real 
engineering processes. 
The designed algorithms that I implemented, furthermore the software that I programmed, are 
based on the above algorithms and referenced works. It is an attempt to provide users with a 
more unified tool where real data can be loaded and the user can see what could be the 
potentials for further optimization of a control loop by this gradient descent based approaches 
[1]–[11]. 
Of course, there might be difference between simulation and real functioning of the 
implemented controller (e.g. as observed in [11]), nevertheless the developed software is 
aimed to indicate the potentials for optimisation of the process control.  

2. Description of Implemented Algorithms 
The background behind the adaptive control utilised in this software application is the well-
known Gradient Descent (GD) method applied to dynamic adaptive models. The applied 
learning rule for dynamic neural units is based on incremental and batch training techniques. 
The incremental (sample-by-sample) adaptation is based on Real Time Recurrent Learning 
(RTRL) technique [3]. The batch adaptation is based on modification of Back-Propagation 
Through Time (BPTT) technique [4] implemented as a combination of RTRL with the famous 
Levenberg-Marquardt algorithm as shown in [8].  

In the implemented software, both these learning techniques (RTRL and BPTT) can be 
independently used, or combined to adaptively identify a system, i.e. either a plant or even a 
whole control loop, and to adaptively tune the controller to demonstrate potentials for further 
optimisation of the control process.  

So far, the whole application has been designed for considering only single-input single-
output systems. 

2.1 Gradient Descent Adaptation 
The Gradient Descent algorithm is one of the most fundamental learning rules behind neural 
units such as LNU and QNU (e.g. [1][2]) used throughout the program. This method is 
suitable for both online and offline tuning of static and, more importantly for this paper, 
dynamic models. The essence of this algorithm is to learn the model of the plant, however it 
can also be utilised in tuning a controller such as the neuron type controller (Neuro-controller) 
[9]–[11]. 

Firstly we introduce the general form of the LNU respectively QNU, as expressed via the 
following polynomial forms; 
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where w is updatable vector of neural weights and x is vector of inputs in the case of a purely 
static model, or as here also previous outputs corresponding to a dynamic model. Similarly, 
the quadratic neural unit can be expressed as follows; 
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Adopting the long vector notation according to [6][7], QNU can be expressed as; 
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where rowx and colW are long-vector representations of the input vector and weight matrix 
of the quadratic neural unit in general. The goal behind this algorithm is adaptation of neural 
weights, this is the key behind the learning process of the model. This is achieved via 
modifications of the fundamental gradient descent formula for the LNU and QNU 
respectively as follows; 
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where µ represents the learning rate of the weight adaptation, e(k) represents current error 

between real and calculated output. The final term ( )
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 corresponds to the partial 

derivatives of the neural unit output, respective to each neural weight. For understanding in 
how this partial derivative is computed we shall derive it in the following section. As for the 
QNU, the Gradient Descent algorithm is as follows;  
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2.2 Adaptation of Dynamic Linear Neural Units  
If we say that our linear neural unit will be dynamic (with feedbacks from output), we can 
choose our vector x to feed previous samples of output to input, for example, 
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where ny and nu are numbers of corresponding components of input vector. In such case we 
will have 6 weights, corresponding to each of the elements of input vector x. We can thus 
expand equation (4) in the following manner. 
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Thus for our dynamic model equation, all terms denoted as y are previous output values, the 
total amount of which is ny. These previous output values of y, were calculated using the 
same model equation at different sampling times of k, thus here too we have a function of the 
previous weights. We thus find that on differentiation of these individual terms we will utilise 
the product rule of differentiation, which yields the following matrix. 
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This derivation can thus be analogically applied to all other various other types of model 
polynomial equations. In the sense of the plant identification algorithms used in this software, 
it became apparent that a much simpler version of this derivation seemed to work better in the 

various tested data, where by ( 1) .
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terms of this partial differentiation are recurrently trained variables, which seem to somewhat 
complicate the update of the weight training process. Another component of this algorithm, 
necessary to mention is the learning rate µ, this plays a key role in the adaptation algorithm. It 
essentially corresponds to the speed of learning for the neural unit, should  µ  be high, then so 
too is the rate of learning for the neural model. Analogically setting  µ to a smaller value 
dictates slower learning for the model. This can be advantageous as the model is allowed to 
process the learning more effectively ie; analogical to humans where the longer time is given 
to learn, the more easily can a human remember the information. Thus through every 
adaptation step k, the model is trained to represent the behaviour of the process for which its 
data was provided. 

Often we may find that for different process data it is better to normalise the learning rate 
due to problems associated with instability during the learning of the neural units. In theory 
[6], the fundamental normalisation of the learning rate is given as follows; 
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where ‖𝐫𝐨𝐰𝐱(k)‖22 is the Euclidean norm of the vector rowx, furthermore ε represents a 
normalisation constant, which is updatable over adaptation step k. However in this software it 
was apparent that a more simplified version of this learning rate normalisation can be used as 
follows; 
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2.3 Adaptation of Dynamic Quadratic Neural Units  
 
Adopting the long term notation for the QNU training [2][6][7], the above equation (3) 
defines the QNU.  For further definition as per equation (12) we must also distinguish the 
following; 

 Tcolx = rowx  (10) 

When looking at the already introduced equation of the gradient descent algorithm as per 
equation (5), here we see that in this case the partial derivative is in terms of colW, In general 
this partial derivative would thus be represented via the following matrix term; 
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In addition to this, the learning rate µ may be replaced via a normalized learning rate in aid of 
better stability in certain applications of this model, as follows; 
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2.4 Extension of Gradient Descent Method on the Neuro-Controller 
To understand the mechanics behind the gradient descent algorithm, as applied to the Neuro-
Controller setup, we should first consider the control scheme (loop) as follows; 

 
Figure 2: Control Scheme of the Neuro-Controller. 

where ro is adaptable proportional gain. In Figure 2 as above, we see two main neural unit 
blocks denoted w.x and v. ξ. In this control scheme block w.x refers to the plant identifier 
(used to similarly to learn the behaviour for the given process data) and v. ξ. is thus the 



Neuro-Controller used to manipulate the newly feed input into the neural model for control. In 
this case the neural weight update would be dictated via the gradient descent algorithm in the 
following way; 
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where iv are adaptable neural weights of the Neuro-controller and ereg(k) is the error between 
the desired value of the plant (denoted d) and the real plant output value at sample k. The most 

crucial component behind equation (13) is hidden within the partial derivative ( )
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application of the chain rule we may derive the final form of this derivative for use in the 
programming algorithm as; 
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where q
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, corresponds to the partial derivatives from the Neuro-Controller equation with 

respect to the updatable weights v. In order to understand computation of this partial 
derivative we must define matrix ξ . For example as represented in Figure 2, we may define 
as; 
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Thus for this case, the partial derivative with respect to the updatable Neuro-Controller 

weights iv , yields that in fact .q
v

ξ∂
=

∂
Analogically this result was applied in the presented 

software, where the length of previous results of y is adaptable via the edit entitled “nqy” 
within the Neuro-Controller panel. Similarly too the length of previous samples for the 
difference of desired to model output (d-y) is adaptable via the parameter nqe. 

2.5 Real Time Recurrent Learning, Back-Propagation Through Time 
Throughout this software there are two key methods of weight training or learning utilised. 
These methods are known as Real Time Recurrent Learning [3] or shortly RTRL and Back-
Propagation Through Time [4], shortly BPTT. So far the gradient descent algorithm was 
introduced above as per equation (4) for DLNU and equation (5) for DQNU. These equations 
are in essence the Real Time Recurrent Learning, however what is key to distinguish is that 
this only applies for dynamic adaptive models, where adaptation is achieved over sample by 
sample.  

Thus another approach for adaptive learning is to in fact train, rather than over each sample, 
over a series of runs or epochs of the neural algorithm. The advantage of this is evident for 
instance in noisy data. Here rather than learning with noise over sample by sample as in the 
RTRL method, we can train over each run or “Batch” where by the main governing law 
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interests in training of the input and output for each run. This is thus referred too as Batch 
training or furthermore Back-Propagation Through Time (BPTT). To understand this method 
in more depth we must introduce a very key equation according to Levenberg-Marquardt 
algorithm as follows  

 11( . ) .T
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Here the weight update algorithm would thus be calculated as  w=w+Δw. In equation (16) the 
term I, is simply an identity matrix. J denotes the Jacobian matrix of derivatives for the model 
polynomial equation. In our case for this software the partial derivative of the model 

polynomial with respect to the adaptable weights w ie; ( )
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or in the sense of DQNU, colx. Thus an extension to equation (16) for batch training (BPTT) 
would be for LNU as follows 
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and for QNU as follows; 
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3. Results 

3.1 Designed Software 

The presented software in this paper, was created via Python 2.6.2 programming language, 
with use of the graphical interface library wxPython. The Interface features two distinctive 
tabs on the main window, which refer to control of a plant (process) and furthermore control 
for a Plant as part of a proportional control loop (P-Loop). It should be stressed that the 
version presented in this paper is a prototype, with further developments to be added in the 
close future.  

 

 

 

 

 

 

 

 

Figure 3: Main Interface of Software – Option for only plant data. 



The above figure (Figure 3) shows the current layout within the “Control of Plant Only” 
window. Here the frame is split to 3 distinct panels. The first allows the user to check their 
uploaded process data is in the path of the program via the “Check Loaded Data” button. 
Following this is the “Plot Data” button, enabling the user to see a visualisation of their 
uploaded process data. After the visualisation of the data is created, the user may require 
resampling of the data, for the purpose of control. Thus an edit titled “Resampling” is featured 
on the bottom of this first panel. 

The following panels of this program are divided into “Plant Identification” and “State 
Feedback Controller (Neuro-Controller)”. Here the user must fill in the learning rate for usage 
of gradient descent algorithm and furthermore epochs. As the values of the learning rate and 
number of epochs differ between the RTRL and BPTT methods, separate edits are placed for 
each within each panel. There is also a feature for the user to define the length of the variables 
used in the model polynomial equations for the respective controller, all of which is explained 
under section 2 in “Description of Implemented Algorithms”.   
Control may be calculated for the following options : DLNU Plant Identification with DLNU 
Neuro-Controller, DLNU Plant Identification with DQNU Neuro-Controller, DQNU Plant 
Identification with DLNU Neuro-Controller and DQNU Plant Identification with DQNU 
Neuro-Controller. This thus gives the user the option to compare behaviour of the different 
methods, furthermore allowing the user to tune for most optimal control to their process data. 

 
 

 
 

Figure 4: Main Interface of Software – Option for data measured from control P-Loop. 
 

An extension to this software is seen in the second tab under Figure 4. Here the Plant may be 
introduced as part of a Proportionally Controlled loop shortly (P-Loop). The functions of this 
panel are analogical to above. This panel proves good for such scheme as presented in the 
Bathyscaphe results of the proceeding section. 

 

 



3.2 Simulations Using the Designed Software 
 
The results presented in this section are mainly based on a theoretical second-order plant, with 
a pulsating signal for Input. However this software was also tested on a real process data, 
which was that of the Bathyscaphe system. In the sense of the theoretical process the 
following transfer function defined our example Plant; 
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Figure 5: Preview of loaded (process) data in a program (Data should be in same folder as 

the Program, thus Check Loaded Data button may be utilised) 

 



 
Figure 6: Plant Identification Using DLNU with RTRL Training mu=1, epochs 100, For 

ny=5 and nu=5  

 

 

Figure 7: Plant Identification Using DLNU with BPTT Training mu=1, epochs 100, For 
ny=5 and nu=5  

 

Here the DLNU with 
RTRL, is Superimposed 
showing that it exactly 
identifies the plant data 

Here the plot of sum of square 
errors, shows how closely the 
model is adapting to the real 
plant data, furthermore the speed 
of the adaptation 

DLNU with BPTT. Good 
identification with noisy 
data. 

Sum of square errors 
decreases more quickly with 
BPTT for same parameters 



 

 
Figure 8: Plant Identification Using DQNU with RTRL Training mu=1, epochs 100, For 

ny=5 and nu=5  

 
 

 
 

Figure 9: Plant Identification Using DQNU with BPTT Training mu=1, epochs 100, For 
ny=5 and nu=5  

 

DQNU with RTRL. 
Curves are superimposed 
also showing exact plant 
identification. 
 

DQNU with RTRL.  
Faster and further 
reduction of sum of square 
errors than DLNU 

DQNU with BPTT. Faster 
adaptation and good 
identification with noisy data 



Results of the Neuro-Controller Given the Previously Identified Plant (Process) 
 

 
Figure 10: Neuro-Controller Using DQNU with RTRL Training mu=0.2, epochs 5, nqy=4 , 

nqe=4 

 

 

Figure 11: Neuro-Controller Using DQNU with BPTT Training mu=0.1, epochs 100, nqy=4, 
nqe=4 

 

 

DQNU Neuro-Controller 
with RTRL, follows shape 
of desired closely.  

DQNU Neuro-Controller 
with RTRL, fast reduction 
of sum of square errors. 

DQNU Neuro-Controller 
with BPTT, follows 
shape of desired given 
noisy data, however the 
above is most desirable 



Application on Bathyscaphe Data 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 12: Bathyscaphe Data- DQNU_RTRL Neuro-Controller Using DQNU_RTRL Plant 
Identification (Control of Plant as P-Loop tab used) 

 
 

  

 

 

 

 

 

 

 

 

 

 
Figure 13: DQNU_BPTT Neuro-Controller Using DQNU_BPTT Plant by designed program, there 

are strong potentials for control optimization of the system. 

DQNU Controller via BPTT, closer 
following to desired output. 

DQNU Neuro-Controller 
with RTRL, follows 
shape of desired 
relatively well. 



 
Results of the developed software in Figure 12 and Figure 13 of the system Bathyscaphe 
indicate large potential for control optimization of its control loop, and indeed the 
Bathyscaphe system had been (with the same real data and gradient-descent based principle) 
optimized in [10] (Figure 1 above) and QNU controller was superior to PID and working in 
the full range of output values. 

4. Conclusions 
As analysed in the results section of this paper we can see a direct reflection of several 
theories presented in section 2. As seen in the plant identifications, with proper tuning of the 
key parameters of the DQNU, we find that it can achieve faster adaptation and consequently 
obtain a more precise model over the same epochs as the DLNU adaptation. Another 
phenomenon witnessed was the smooth behaviour of the BPTT training method for noisy 
data, which as mentioned in section 2, is due to the main governing law of this method 
concerning the input and output of the neural unit over the epochs rather than over sample-by-
sample.  

The essence of this software is to investigate adaptive control potentials for the process data; 
it was found that all though the DLNU_RTRL Neuro-Controller with DLNU RTRL training, 
provided an acceptable result, the DQNU with RTRL training, followed by a Neuro-controller 
via. DQNU with RTRL, seemed to work best, as shown above. However as mentioned 
previously in this paper, this result like all produced via this software is a tool for seeing the 
potentials of control via gradient descent based algorithms, and thus should be checked with 
the real system, whether such control is really possible for real application on the investigated 
engineering process. 
 
List of Used Symbols 
μ- Learning Rate,  
ξ- Input vector into Neuro-Controller 
ε- Normalisation Constant 
ro -Estimated gain of P-controller 
η - Normalised Learning Rate 
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