
Optimization of Input Parameters for the Neural Network

Used in Evaluation of Bio-Signals

Ing. Martina Mironovová

Vedoucí práce: Prof. Ing. Jiří Bíla, DrSc., Ing. Ivo Bukovský, PhD.

Abstrakt

Účelem této práce je nalézt optimální vstupní parametry pro neuronovou síť tak, aby bylo

dosaženo řešení v co nejkratším čase při adaptaci spojité, dynamické kvadratické neuronové

jednotky s dopravním zpožděním pro vyhodnocování biologických signálů. Možné použití

genetických algoritmů je uvažováno a testováno na daném signálu.

Abstract

The purpose of this work is to find optimal input values for neural network in order to achieve

faster solution in adaptation process of a continuous Time-Delayed Dynamic Quadratic

Neural Unit used for evaluation of bio-signals. A use of genetic algorithm is studied and

tested on a certain waveform.

Klíčová slova

Neuronová síť, biologický signal, EKG, genetický algoritmus, optimalizace, váhy, dopravní

zpoždění, TmD-DQNU

Keywords

Neural network, bio-signal, ECG, genetic algorithm, optimization, weights, time-delay,

TmD-DQNU

1. Introduction

Basic concepts of artificial neural networks were laid in forties of twentieth century. The then

researchers draw an inspiration from neural structures of living organisms, predominantly of

a human brain, that consists of more than a hundred billion neurons – basic building units

with ongoing data processing.

A main motivation for the work is a creation of an artificial neural system for evaluation and

prediction of bio-signals, namely a non-conventional Time-Delayed Dynamic Quadratic

Neural Unit (TmD-DQNU). Concept of this work assumes that by studying a behavior of

characteristic parameters of a TmD-DQNU during the adaptation process can reveal and

predict unwanted states in bio-signals, i.e. detection and prediction of arrhythmias in ECG

signal.

1.1 Adaptation of TmD-DQNU

Biological neurons process and transmit information by so called synapses that connect

individual neurons between each other and then create complex structures [1]. Very

fundamental sketch of a continuous, time-delayed quadratic artificial neural unit TmD-DQNU

is displayed in Figure 1.

This mathematical model described in [7] poses better approximation capabilities and can be

expressed by a following equation:

T

2 2

00 01 02 11 12 22

() () ()

() () () () () ()

n

d d d

y t t t dt

w w u t w y t T w u t w u t y t T w y t T dt

x Wx
 (1)

In equation (1) a column vector
1

() ()
()

d

t u t
y t T

x represents neural inputs and a triangular matrix

22

1211

020100

00

0

w

ww

www

W displays weights that are adapted in each step of the algorithm.

Adaptation process is based on RTRL method of a back propagation (Real Time Recurrent

Learning) [7], [8], [9]. Weights and a time-delay can be updated according to following

formulae:

ijijij www (2)

ddd TTT (3)

Equation for a weight increment and time-delay increments, respectively, can be expressed

using formula (4) and (5) [7].

 dt
www

tedt
w

te
w

ty
tew

ijijijijij

n
ij

x
Wxx

W
xWx

x
Wxx

TT
T

T)()(
)(

)((4)

 dtTtyTtywTtytuwTtywteT dndndndnd)()(2)()()()(221202
 (5)

The algorithm adapts weights and time-delay in a way that error between real values and

values coming from the neural network is minimized:

0 neuralreal yye (6)

Due to the RTRL technique and a convex nature of TmD-DQNU neural system is able to

converge to a solution faster than other conventional neural models and does not get stacked

in some less accurate local minima [10].

Figure 1. Schematics of continuous-time TmD-DQNU; a possible representation of a biological

neuron by a quadratic non-linear higher-order mathematical model presented in works [2], [3], [4]

and in [5] and [6].

However, in adaptation to a complex signal, such as ECG signal, it is not straightforward

which initial values of the weight matrix and a time-delay should be set to start the adaptation.

Different initial values of weights and time-delay can influence adaptation process

significantly and this leads to different time periods to find the correct solution. For example,

a test data in a basic shape of ECG signal were loaded as yreal and TmD-DQNU was set to

adapt to the signal.

To explain the initial weight values and a time-delay problem, the adaptation ran under three

different conditions. Input values for each condition is summarized in Table 1.

Table 1. - Input data for three cases of adaptation to one pattern (yreal)

 Case 1 Case 2 Case 3

w00 0 0.3 0.2

w01 0 0 0.05

w02 -0.4 -0.4 -0.05

w11 0 0 0.15

w12 -0.2 -0.2 -0.15

w22 -0.2 -0.2 -0.05

Td 0.05 0.05 1.05

A progress of adaptation is also shown graphically in Figures 2 – 4. Blue waveform

represents yreal data that are periodic and purple curve displays the output of the neural

network. Eventually, all three cases shown will converge to the correct solution and the error

between yreal and yneural signals will be minimal. However, each case with a different number

of steps of adaptation, or with different time intervals. Plots show only the first 30,000 steps

of adaptation and it is visible, that different initial values of weights and time-delay influence

the adaptation process.

The question that arose in this phase of research was simple. Is there a possibility to find or

estimate such input values of weights and time-delay, so that the neural network would

converge as fast as possible? An option is a genetic algorithm – a heuristic method used in

optimization tasks [11].

Figure 2. Comparison of yreal and yneural signals during the adaptation of weights and time-delay

Case 1

Figure 3. Comparison of yreal and yneural signals during the adaptation of weights and time-delay

Case 2

Figure 4. Comparison of yreal and yneural signals during the adaptation of weights and time-delay

Case 3

2 Main Characteristics of a Genetic Algorithm

Genetic algorithm is a heuristic method inspired by Darwin’s theory of descent [11]. It uses

a group of solutions between which it selects the best ones. Selected solutions are combined

between each other (so called crossover process) that lead to newly incurred solutions.

The week solutions (worst ones) are being eliminated. In order to prevent the group

of solutions to be restrained just to combination of already existing ones, the mutation of

selected specimens occurs in every step of the algorithm with known probability. The effort is

to enhance the population in every step of the algorithm so that it leads to the retrieval

of optimal solution, or solution close to the optimal one [12].

2.1 Principle of Finding Optimal Input Parameters

Input values of weights and time-delay of a concrete solution are for the purpose of algorithm

coded into so called genome, or chromosome. Such a chromosome contains of genes and each

gene represents one combination of input parameters. At the beginning of the algorithm input

data are selected randomly for each specimen. Together, data create a population matrix.

The population matrix goes through four phases in the algorithm, similarly as described in

work [12].

In order to estimate the solution quality, the so called fitness function can be used. This

function can take arbitrary form and in this example it is represented as an error between yreal

and yneural after specified iterations of the neural network. The aim is to minimize this

function.

2.2 Results from Genetic Algorithm

During the estimation of optimal input values of the neural network by use of a genetic

algorithm, several problems occurred. Firstly, because the fitness function represents an error

between real and neural data, the part of calculation is actually run of the neural network itself

in order to see, how weights and time-delay influence the adaptation process of the neuron.

Some values of weights or time-delay lead the whole network to instability, causing the

output from the integrator block in the neural model (in Matlab) to give out infinite values or

not a number (NaN) value. Such a situation leads to the halt of calculation in the neural

model. Though infinite values in the integrator block can be restrained to a boundary values,

NaN cannot be replaced. For such situations, the whole calculation including the genetic

algorithm process is stopped.

In case that the random values for weights and time-delay in genetic algorithms do not lead to

the unstable system, the calculation proceeds. However, in a genetic algorithm a fitness

function (or a calculation of the error) has to run multiple times. In the first part of the genetic

algorithm it runs m-times, for each population (i.e. m = 10, the size of the population). In the

second part of the process, it runs in reproduction and mutation phase (l = 2). Together,

mutation and reproduction phase is done k-times, for k number of iterations. From

experiments and empiric data, number of iterations for an efficient genetic algorithm should

be at least 100.

From the data above, total number of steps taken in the neural network during the genetic

algorithm calculation can be estimated if a neural network calculation is taken on 30,000 steps

(s = 30,000) as follows:

 in phase 1: m × s = 10 × 30,000 = 300,000 steps

 in phase 2: k × l × s = 100 × 2 × 30,000 = 6,000,000 steps

From the calculation above a total steps in neural network taken during the calculation of

a genetic algorithm come to 6,300,000 steps.

From empiric data taken so far, one neural network can adapt to some acceptable value (with

some certain error low enough) in 300,000 ÷ 500,000 steps. Obviously, this value is much

lower than value obtained from the genetic algorithm and thus it is faster to select random

input data to the neural network and run the adaptation for more steps (300,000 ÷ 500,000

steps to the waveform yreal displayed in Chapter 1.1).

3. Discussion

The main purpose of the work was to try to find optimal input weights and time-delay values

for TmD-DQNU in order to speed up the adaptation process and to converge to a solution

faster. To find optimal input values, a genetic algorithm was selected. However, some

applications find this heuristic algorithm useful, this particular example proved that evaluation

of possible solutions (input data) takes too many steps that prolong the calculation times. This

is the main reason, why this method is not efficient.

Another problem that occurred with combination of neural network itself and genetic

algorithm was fact that some input data make neural network unstable. This situation leads to

instability of the system and stops the whole calculation.

4. Further Work

A possibility how to solve the problem of instability of the neural system described above can

be observed and studied in the software, where simulations are processed (Matlab). Possible

ways how to remove NaN values coming from the integrators may exist and should be

investigated. A possibility how to speed up the genetic algorithm may be in number of steps

taken in neural network – number of steps taken should be lowered and an output should be

tested.

The problem of optimal input values may also be solved by a method of wavelet transform.

With this method, parameters of yreal waveform, such as frequencies present in the signal, can

be found. Knowledge of these parameters may help in selection of input data to the neural

network.

List of Used Symbols

yreal output – real waveform [-]

yneural output from the neural network [-]

e error (yreal – yneural) [-]

wij neural weight [-]

d time-delay [-]

x input to the neural network – column vector [-]

W weight matrix [-]

µ learning rate [-]

m size of population in genetic algorithm [-]

k number of iterations of the genetic algorithm [-]

l number of phases (reproduction and mutation) [-]

s number of steps for neural network [-]

References

[1] SRAMEK, Bo et al: Biomechanics of The Cardiovascular System. Faculty of

Mechanical Engineering, CTU, Foundation for Biomechanics of Man, 1995

[2] BUKOVSKY, I.- HOU, Z. - BILA, J., GUPTA, M.: Foundation of Nonconventional

Neural Units and their Classification. International Journal of Cognitive Informatics and

Natural Intelligence (IJCiNi), October-December 2008, IGI Global, Hershey PA, USA,

pp.29-43, ISSN 1557-3958.

[3] BUKOVSKY, I.: Modeling of Complex Dynamical systems by Nonconventional

Artificial Neural Architectures and Adaptive Approach to Evaluation of Chaotic Time

Series. Ph.D. Thesis, Faculty of Mechanical Engineering, Czech Technical University in

Prague (in English, defended September 7, 2007, supervisor Bila, J., supervisor-

specialist Gupta, M., online at http://www.fs.cvut.cz/~bukovsky/ivo.htm).

[4] BUKOVSKY, I. - BILA, J.: Adaptive Evaluation of Complex Time Series using

Nonconventional Neural Units. ICCI 2008, The 7th IEEE International Conference on

COGNITIVE INFORMATICS, California, USA, 2008, ISBN 9781424425389.J.

[5] VIZI, E.: Role of High-Affinity Receptors and Membrane Transporters in Nonsynaptic

Communication and Drug Action in the Central Nervous System. Pharmacological

Reviews, Vol. 52, No. 1, pp. 63-90, 2000

[6] HINES, W.: A logarithmic neural network architecture for unbounded nonlinear

function approximation. in Proc. Int. Conf. Neural Networks 1996, vol. 2, pp. 1245–

1250.

[7] BILA, J., MIRONOVOVA, M.: Adaptation of a time-delayed dynamic quadratic

neuron for evaluation of bio-signals. ARTEP 2012, ISBN 978-80-553-0835-7.

[8] WILLIAMS, R. – ZIPSER, D.: A learning algorithm for continually running fully

recurrent neural networks. Neural Computation, vol. 1, pp. 270–280, 1989.

[9] BUKOVSKY, I. - HOMMA, N.: Dynamic Backpropagation (in Czech). Automatizace,

Vol. 52, No. 10, Prague, Czech Republic, Oct 2009, p.586-590, ISSN 0005-125X.

[10] BUKOVSKY, I. et al: Quadratic Neural Unit is a Good Compromise Between Linear

Models and Neural Networks for Industrial Applications, 2010 IEEE

[11] MAJDA, F.: Utilization of Artificial Intelligence in Operational Research (in Czech).

Research project, FJFI CTU in Prague, 2009

[12] MIRONOVOVA, M., HAVLIS, H.: Calculation of GDOP Coefficient. STC 2011,

ISBN 978-80-01-04796-5

