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Abstract 

This paper presents a fluid transient inflation experiments with a viscoelastic composite tube 

and its numerical simulation. Mathematical description of experimental setup (inflated tube, 

piping and pressurized vessel) is based on the windkessel model and a nonlinear viscoelastic 

constitutive model of the inflated tube, which is derived from the principle of maximised 

dissipated energy. The governing system of equations is solved by means of the implicit Euler 

method. Fluid transient simulation was used for relaxation parameter identification of the 

constitutive viscoelastic model of the specimen.  

The viscoelastic tube was tested by inflation and a fluid transient test. The tested tube had a 

composite structure with layer reinforced by fibre oriented in helical structure with limited 

extensibility. The purely elastic part of constitutive model was obtained from the inflation test.  

Results obtained from simulations were compared with experimental measurements carried 

out on a viscoelastic tube and relaxation parameter was obtained.  

Simulations with increased viscosity and local losses and the purely elastic response of the 

tube wall were carried out (no wall damping function). These results were compared with 

experimental data to confirm the hypothesis that wall viscoelasticity plays an important role 

in damping pressure pulsations within the tested specimen. 

 

 

Keywords 

Viscoelasticity, fluid transient, blood vessel, pressure pulsation, evolution equation, maximum 

dissipation 

1. Introduction 

Viscoelastic processes are non-equilibrium time dependent processes. Some energy is 

reversibly stored during loading and some is dissipated to heat. Several approaches exist for 

viscoelastic behaviour description of solids.  

One approach is utilization of the hereditary integral formulation based on Boltzmann 

superposition principle for modelling nonlinear viscoelastic behaviour developed by Coleman 

and Noll [3] and used for soft tissue by Fung [4] who named this approach as Quasi-linear 

viscoelasticity (QLV). Many researchers adopted and adapted QLV theory to fit the responses 

of soft tissues Abramowitch and Woo [1], Funk et. al. [5], Lynch et. al. [13], Sarver et. al. 

[14], Toms et. al. [15], Valdez-Jasso [17]. There are also phenomenological models that are 

derived from parallel or serial connection of elastic springs and viscous dampers Valdez-Jasso 

[16], Bessems [2]. The transversely isotropic viscohyperelastic material was introduced in 

Limbert and Middleton work [12]. The mechanical formulation is based on a definition of a 

general Helmholtz free energy function which is a sum of hyperelastic and viscous potential. 

Their approach is capable to describe anisotropic viscous behaviour also. Other approach is 



formulation viscoelastic processes in the state variables which lead to evolution equations and 

it is presented in Holzapfel work [10, 11] where the state variables are presented as inelastic 

strains or stresses. The foundations of this approach are still derived from phenomenological 

models of connected springs and dashpots. Haslach [6, 7, 8, 9] introduced a new class non-

equilibrium thermoviscoelastic evolution equation based on long-term behaviour and a 

maximum dissipation principle for polymers, rubbers and soft tissues. The non-linear 

evolution equations (1) for thermoviscoelastic behaviour in terms of state variables, xi, and 

control variables, yi, are generated from long-term constitutive models represented by an 

energy function Ψ used for elasticity, see below. 
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This approach reduces the number of experiments and there is no need to obtain creep or 

relaxation function for description of these phenomena. Moreover, the classical spring and 

dashpot linear models were recovered from this hypothesis (Kelvin-Voight model, Standard 

Linear Solid model). 

This paper deals with a fluid transient experiment on a composite tube. Mathematical model 

formulation is simplified by the fact that only a small part of system boundary is flexible 

(tested section of elastic tube is very short comparing with a long rigid piping in experimental 

setup). Thus the effect of a moving pulse wave can be neglected and the whole system can be 

approximated by the ‘windkessel’ (0-D) model that is by a system of ordinary differential 

equations. Only one specimen of elastic tubes was tested: a simple tube having a composite 

three layers structure. The primary aim is to obtain a relaxation parameter of the constitutive 

model for description of the tested specimen during transient loading. Haslach’s construction 

of thermostatic nonlinear evolution equation was utilized for this purpose. The investigated 

parameter is relaxation parameter.    

2. Methods 

2.1  Manufacture of physical model blood vessel  

Physical model was developed as a composite tube with three layers. The first (intima) layer 

was formed from a thin wall latex tube. The second layer (media) was formed from rubber 

band helically wounded on the outer surface of the first layer. The rubber band increases its 

stiffness significantly when a large deformation is achieved (tested bands have the limiting 

stretch ratio 2). The connection between the first and the second layer was realized by a 

silicone matrix. Silicone matrix formed also the third layer. 

2.2 Experiment - Inflation test 

Inflation test was carried out to obtain the dependence between pressure and volume, i.e. to 

provide information on elastic behaviour of the tested specimen at equilibrium state. The 

physical model was inflated by a small predefined increment of volume and the 

corresponding pressure was recorded by a pressure transducer. 



2.3 Experiment – Fluid transient test 

Experiment was carried out using the experimental setup shown schematically in Fig.1. 

Experiment proceeded by this way: at the beginning the pressure vessel and the tested 

specimen are pressurized by the compressor (C). When the demanded pressure level is 

reached inside the specimen, p, and in the pressure vessel, pa, the compressor is turned off. 

After the water level and pressures were stabilized the electromagnetic valve (stop-cock) is 

opened and almost instantaneously closed so that the air pressure pa drops to a prescribed 

value (still above the atmospheric pressure, this value is specified so that to avoid a possible 

collapse of the elastic tube during oscillations). The sudden drop of pressure initiates 

oscillation of the water column, accompanied by pressure pulses, p(t), recorded by a pressure 

transducer. The water column motion is driven by gravity forces (height hN+hP) and by 

pressure forces caused by compression and expansion of air volume, (Va). The tested elastic 

pipe has approximately the same initial inner radius r0 as the connected piping and the valve, 

the length of tested elastic section is about 5% of the connected rigid pipes. Parameters of 

water hammer experiment are presented in Tab. 1. 

 
Fig. 1. Scheme of experimental setup with reservoir 

 

Table 1. - Water hammer experiment parameters 

Specimen Value 

Inner diameter r0 0.0174 m 

Wall thickness h0 0.0023 m 

Length 0.05 m 

Piping Value 

Inner pipe diameter 0.023 m 

Wall thickness of pipe 0.0028 m 

Height hN 0.17 m 

Height hP 1.08 m 

Air volume Va0 2.96x10
-4

 m
3
 

Volume V0 3.41x10
-5 

m
3
 

Minimum valve diametr 0.00132 m  



 

The volume, Va0, V0, corresponds to the state with atmospheric pressure within the pressure 

vessel and the tested composite tube. 

2.4 Mathematical model  

Mathematical model is reduced to 5 ordinary differential equations and continuity equation 

for 6 unknowns: mass of air, ma(t), pressure, pa(t), of air in the pressure vessel, pressure, p(t), 

in the viscoelastic pipe, flow velocities, wP(t), wN(t), in the rigid piping and the pressure vessel 

and the flowrate, V , through the rigid piping.  

The mass flowrate of air through the stop-cock (2, 3) follows from the St.Venant-Wanzel 

equation for subsonic flow, 
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where κ is the specific heat ratio, patm, is the atmospheric pressure and ρa is the actual air 

density. S(t), is the flow-through area of the electromagnetic valve and its time course, 

controlled by a computer, is shown in Fig.2. 

 
Fig. 2. Valve actuating function S(t) 

 

Pressure changes inside the decompressed vessel depend upon the mass flowrate of air and 

upon the change of the internal volume, Va. Assuming adiabatic expansion of air in the 

pressure vessel the pressure changes can be calculated as 
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Continuity equations for incompressible liquid 
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where, Nw
, Pw

, are velocities in the pressure vessel and in the rigid pipe and AN, AP,  are 

corresponding cross-sectional areas. 

The Bernoulli’s equation (8) takes into account inertia of liquid, change of cross-sections, 

friction, a pressure and gravity forces 
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P, N, are the dArcy’s friction factors calculated as 64/Re in laminar and as 0.316/Re
0.25

 in 

the turbulent flow regime. Coefficients, VzP, PN, determine local pressure losses with sudden 

change of velocity and transition section. 

The Eqs.(9,10) describe relationship between pressure, volume and rate of the volume change 

of the viscoelastic section (therefore viscoelastic behaviour of wall) assuming a parallel 

arrangement of a dashpot and an elastic unit  
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The elastic part Ge can be described by a hyper-elastic model (assuming symmetrically 

deformed circular pipe) or by using an experimentally determined function from the quasi-

static inflation test. The relaxation coefficient k has in this case the unit [Pa/s] and must be 

evaluated from the observed attenuation of oscillations. The form of Gv(V) was derived 

according to the idea of Haslach [13] (the idea assumes that the viscous characteristic can be 

expressed in terms the elastic behaviour using only one relaxation parameter) in the form  
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where, r0, is the reference inner radius, h0, correspond to reference thickness of tested 

specimen. 

To make the model description more readable it is possible to rewrite the Bernoulli’s equation 

(8) into the form 
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using Eqs.(6,7) for elimination of velocities, and the volume V replaces the water level hN. 

Evolution of pressure inside the elastic tube follows from the Eq.(10) combined with the 

Eq.(13) 
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while the evolution of pressure inside the pressure vessel pa is described by Eq.(5). The last 

differential equation  

 

dV
V
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

 (15) 

completes the system of four differential equation for unknown variables 
, , ,ap p V V

. 

Initial conditions for the system (2-10) are pressures in the pressure vessel and zero velocities 

(flowrate). The initial air density ρa0 is given by equation of state for ideal gas. The volume of 

air in the pressure vessel and water volume in tested specimen are given by equations below, 

 0 ( )a aV V V p 
 (16) 

 0 ( )V V V p 
 (17) 

The volumes Va0, V0 correspond to state with atmospheric pressure within the pressure vessel 

and the composite tube. When the pressure vessel and specimen are pressurized the volumes 

Va0, V0 increase by the same value V(p) (volume of displaced water). 

Fully implicit Euler method was used for the numerical integration of differential equations 

(12),(13),(14),(4) and implemented as a simple Fortran program. 

 

2.5 Frequency analysis  

Frequency analysis was carried out on time interval 0-1 second. The main frequency was 

determined as the number of peaks per time interval. 

3. Results 

3.1 Elastic response 

The inflation test of the blood vessel physical model revealed nonlinear pressure-volume 

relationship, see Fig. 2. 

 
Fig. 3. Nonlinear pressure-volume relationship fitted by linear spline model. 



 

The model (linear spline model) was adopted for description of the pure elastic behaviour. 

The model fit experimental data successfully. 

3.2 Dynamic response 

Results from experiment and simulation are shown on Fig. 4. , Fig. 5. Points represent 

recorded pressure during the fluid transient experiment and the blue line is numerical 

prediction. The coefficient k of the attenuating function Gv which was used in simulations was 

estimated manually, see the Fig. 4.  

 

Fig. 4. Pressure responses after almost instantaneously closed valve and simulation with three 

different constants k. 

The attenuation of pressure on Fig.5. is caused only by enlargement of local pressure losses 

by thousand fold (purple line) and enlargement of dynamic viscosity by hundred fold (blue 

line), in this case is function Gv=0. 



 

Fig. 5. Pressure responses with zero G2 

Measured natural frequency was approximately 7 Hz. The simulation based on the linear 

spline model gave the frequency approximately 6.5 Hz. 

4. Conclusion 

The approximation of static inflation experiment p(V) by linear splines was used for 

modelling a transient response of the system consisting in viscoelastic pipe+rigid 

pipe+pressure accumulator, filled by water. Comparison of recorded pressure pulsations with 

simulations enables us to identify the value of relaxation parameter of the attenuation 

function. The best fit corresponds to simulation with relaxation coefficient k=8E8Pa/s. 

Simulations with increased viscosity and local losses and the purely elastic response of the 

tube wall (no wall damping function) revealed that the viscoelasticity of the tube wall is 

important for pressure pulsation attenuation. In order to achieve of similar attenuation at 

purely elastic response of the wall, the dynamic viscosity have to be increased approximately  

hundred times, or local losses have to be increased thousand fold.  

It was demonstrated that the viscoelastic response of the wall is essential for attenuation of 

pressure pulsations and that the experimental setup design is suitable for measurement of 

viscoelastic behaviour of the straight tubes.  

 

 

Symbols 

PN  local pressure losses with sudden change of velocity    [-] 

VzP  local pressure losses with transition section      [-] 

κ  specific heat ratio         [-] 

N   pressure-vessel dArcy’s friction factor      [-] 

P   piping dArcy’s friction factor       [-] 

ρ  water density          [kg/m
3
] 

ρa  air density          [kg/m
3
] 

ρa0  initial air density         [kg/m
3
] 



Ψ  strain energy density function       [J/m
3
] 

AN  pressure-vessel cross-sectional area       [m
2
] 

AP  pipe cross-sectional area        [m
2
] 

g  gravitational acceleration        [m/s
2
] 

Ge  stiffness characteristic of tested specimen      [Pa] 

Gv  attenuation function         [Pa
2
/m

3
] 

h0  initial wall thickness         [m] 

hN  water level height within the pressure level      [m] 

hP  pipe height          [m] 

k  relaxation parameter         [Pa/s]  

ma  air mass          [kg] 

p  pressure within tested specimen       [Pa] 

pa  air pressure in pressure vessel       [Pa] 

patm  atmospheric pressure         [Pa] 

r0  initial radius of tested specimen       [m] 

Re  Reynolds number         [-] 

RN  pressure-vessel radius        [m] 

RP  pipe radius          [m] 

S  cross-sectional area of outflow valve      [m
2
] 

V  volume within tested specimen       [m
3
] 

V0  initial volume within tested specimen      [m
3
] 

Va  air volume within pressure vessel       [m
3
] 

Va0  initial air volume within pressure vessel      [m
3
] 

wN  velocity within pressure vessel       [m/s] 

wP  velocity within pipe         [m/s] 

xi  state variable 

yi  control variable 

am   mass flow rate         [kg/s] 

V  flow rate          [m
3
/s] 
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