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Abstract 

This paper presents a study of lung tumor-motion time-series prediction, first, with the use of 

conventional static (feedforward) MLP neural network (with a single hidden perceptron 

layer) and, second, with the static quadratic neural unit (QNU), i.e., a class of polynomial 

neural network (or a higher order neural unit). We also demonstrate that QNU can be trained 

in a very efficient and fast way for real time retraining due to its linear nature of optimization 

problem. The objective is the prediction accuracy of 1 [mm] for 1-second prediction horizon. 

So it is well applicable for radiation tracking therapy. 
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1. Introduction 

During lung-tumor radiation therapy, the radiation must be maintained in the region of tumor 

and it should be kept far away from the healthy tissue. However, this is a nontrivial task 

because of the body motion. The tumor motion can be associated with internal movements 

caused by cardiac cycles, and respiration, and also with patient's stochastic movements and 

systematic drifts [1] [2].  The respiration is dominant among them, thus respiratory motion 

has been widely studied. The respiratory motion becomes a complex non-stationary process 

(if the respiration changes amplitud and/or period over time over time).  

 In lung tumor motion it is well known to have amplitud between 0.5 and 2.5 cm, even 

some times 5 cm [4]. As a consequence, the dose distribution might be delivered significantly 

different from the prescribed one, and the radiation toxicity may increase dramatically [5] [6] 

[7] [8] [9] [10].  

 Several methods have been developed to model the respiratory motion gated radiation 

therapy or real time tumor tracking, but their use is still questioned [1][3]. Three general 

approaches have been achieved to predict respiration behaviour [3]. Biomechanical study of 

the breathing process is the basic approach. Other method consists of a respiratory 

mathematical model using harmonic functions. The most promising method is an approach 

based on learning algorithms which need to be trained with previously observed input-output 

patterns. 

 According to the above statements, feedforward neural networks have promising 

capabilities for implementation to lung motion time series prediction, and lung motion 

prediction with neural network (NN) is a subject of great interest in medicine due to the 

possibility of capturing dynamics and structural aspects [5] [3]. Some authors are convinced 

that deep analysis is still needed [5] [3] [11] [12]. 

 Regarding the above issues of neural networks and our experience with higher-order 

nonlinear neural architectures [13] – [16] we extend our study on a second order neural unit 

so called quadratic neural unit (QNU). QNU can be considered a standalone second order 

neural unit of higher order neural networks (HONN) or a class of polynomial neural networks 

[17][18].  



 We study implementation of static neural networks (i.e. MLP and QNU), we use the most 

popular learning algorithm, i.e., the Levenberg-Marquardt (L-M) algorithm [19] [20] that is 

powerful optimization algorithm and it is easy to be implemented. L-M technique is used for 

non-linear least-squares problems. When the solution is far from the correct one, the 

algorithm behaves as a steepest descent method. 

 Also, because of the nonstationary nature of lung tumor motion in time, we implemented a 

sliding window retraining [21] to capture temporal variations in time series validity of the 

neural model at every sample of prediction. 

 In this paper, we propose a study of lung tumor motion time-series prediction, first, with 

the use of MLP neural network (with a single hidden perceptron layer) and, second, with the 

QNU. We also demonstrate that QNU can be trained in a very efficient and fast way for real 

time retraining. The objective of our study was to achieve the prediction accuracy bellow 1 

[mm] for 1 second prediction horizon with our approach and to study capabilities of simplest 

yet powerful neural network models, i.e. static MLP networks and static QNU to achieve 

better prediction accuracy than in published and comparable works. The QNU was chosen for 

its high quality of nonlinear approximation and its excellence convergence [16] that is in this 

paper discussed in the light of its linear optimization nature(a unique minima for training). 

 

2. Data description 

The three-dimentional time series of lung tumor motion data were obtained from 

measurements by Hokkaido University Hospital [22][23].  
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Figure 1. Preprocessed time series of the observed tumor marker position of the lung. 

  

 The sampling period was 30Hz, and the spatial resolution was 0.01 [mm]. The time series 

were preprocessed in order to reduce the noise and avoid abnormal data included in rough 

data of the time series [22][24]. The preprocessed time series is shown in Figure 1. 
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 The vector ( )ky (eq. (1)) at discrete time k=1,2,…, y1(k), y2(k) and y3(k) are positions of 

marker on the lateral, cephalocaudal, and anteposterior axes in [mm]. The dominant periods 

of the time series are approximately about 3 seconds. 

 

3. Prediction Methods 

3.3 Sliding Window Retraining  

Because the respiration time series are highly nonstationary (with time varying frequency, mean and 

amplitudes), it is impossible to obtain a generally valid model from a single training data set. 

Therefore, we investigate the effect of retraining of the MLP and the QNU predictive models to their 

prediction accuracy. We retrained the models with most recent history of measured values at every 

new measured sample, i.e. before each new sample prediction. This approach is sometimes referred in 

literature as a sliding window approach [21].  

 For every retraining we choose epochs = 30 (for MLP) and epochs = 300 (for QNU) as we 

could notice that the mean absolute error was not improved with more number of training 

epochs into the window especially for long term prediction. After the current window training 

is performed, the neural network predicts the unknown ns samples ahead from the new 

measured value. The training window for the predictive models is shown in Figure 2. 

 

 

Figure 2. A sliding (retraining) window for model retraining at every new 

measured sample, the window slides ahead with each new measured sample. 

  

 We used the well known L-M algorithm for the weight increments of i-th hidden neuron at 

every epoch of training.  
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 In the L-M algorithm for MLP neural network, µ  can be automatically decreased or 

increased at every training epoch depending on the convergence of the training performance 

of the network, which is for N training samples given as sum of square errors 
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and from trial searches we concluded the following scheme 
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 The L-M algorithm for the perceptron-type network, requires computation of the Jacobian 

matrix Ji  at each epoch, so the matrix inverse has to be always calculated according to the 

basic L-M formula in epoch-times [19][20]. The inverse matrix calculation for the network 

results in slowing down the real-time computation. 

 In the QNU predictive model, the inverse during the calculation of the Jacobian Matrix is 

calculated only once before the training in epochs starts, and then we also calculate the weight updates 

only with varying e that is the only vector that is recalculated at every epoch in the modified L-M 

formula [19][20]. Mareover, we concluded that it was not necessary to implement increasing learning 

rate for QNU (as it was desirable for MLP and that can be reasoned by the superior convergence of 

QNU during training due to its linear nature of optimization problem.  

 Also, we notice that with the use of least square method we could avoid the inverse during the 

calculation of the Jacobian matrix, so we highligh merely division for a single weight. The 

computation time is much faster because the increment of the weights can be calcualted in a for loop 

using merely division rather than calculate all weight updates once by the original L-M  formula with 

the inverse of a large matrix. Thus, the only vector that is recalculated every epoch in the modified L-

M formula is the error e. 

 

4. Experimental Analysis 

4.1 MLP 

Experiments were carried out for 30 Hz and 15 Hz sampling. We investigated the effect of various 

setups of n, ns, and Ntrain to predict accuracy that was calculated as 
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 where N is the number of testing samples, and e1, e2, and e3 are the predicting errors of every axis 

1, 2 and 3. For the predictive model applied on 30 Hz lung tumor motion recorded data, the prediction 

horizons and the different input configuration analysis are presented on Figure 3 (a)-(b). Figure 3(a) 

summarizes prediction errors at 1 [sec] (=30 steps) ahead by sliding window technique during testing 

for the time series. The results show prediction errors (MAE) for prediction horizon 1 [sec] when 

lengths of input vector were n = (10,15,30,45,60,90) of Y(k). The number of input-output training 

patterns of the window is settled at Ntrain=360. 

 According to our testing, the prediction performs more precise results with n =30 samples back 

from the time series taken as input to the neural network that are present in the current wave of the 

respiratory dynamics. For instance, n=30 samples back of the time series includes useful information 

for the prediction, less or more inputs to the predictive model can affect badly to the prediction error, 

as can be seen in Figure 3(a).  

 Figure 3(b) shows the mean absolute error for prediction horizons tpred=[1/6, 1/3, 0.5, 1, 1.5, 2] 

[sec] for a single length of input vector x with n=30, see (3). The number of training samples for the 

windows were settled to Ntrain= 360. As it can be seen in Figure 3(b), the prediction MAE becomes 

larger as the prediction horizons increase.  



 

 

Figure 3.  (a) The smallest MAE of 1 second prediction was obtained with n=30 input 

samples to a 2-hidden-neuron neural network, sampling of 30 Hz). (b) MAE is 

increasing with prediction horizon tpred=[1/6, 1/3, 0.5, 1, 1.5, 2] [sec]. 

 

 The resulting time series prediction (30 Hz sampling) was carried out for k=1000 to 2300 by MLP 

predictive model. The configuration of the model was n=30 samples back used as inputs to the 

network, n1=2 neurons were used for the prediction, and Ntrain=360 were considered as input-output 

training patterns for the sliding window. Thus, the MAE of the 0.5 [sec] prediction horizon was 0.75 

[mm] with computing time of 304 [sec] and the MAE of the 1 [sec] prediction horizon was 0.96[mm] 

with 303 [sec] of computing time. 

 In the case of MLP predictive model applied on 15Hz sampling data, the predicting results are 

presented on Figure 4 (a)-(b). Figure 4(a) summarizes prediction errors at 1 [sec] (=15 steps) ahead by 

sliding window technique during prediction of time series. The results show prediction errors (MAE) 

for prediction horizon 1[sec] when lengths of input vector configuration were n=(5,8,15,23,30,38,45) 

of the time series signal Y(k). The number of input-output training patterns of the window is settled at 

Ntrain=180. In Figure 4(a) is shown that according to our testing for 1 [sec] prediction horizon, MAE 

= 0.96 [mm] was the smallest prediction error, which was obtained with n=15 samples used as inputs 

to the network.  

 Figure 4(b) shows the MAE for prediction horizons tpred=[1/6, 1/3, 0.533, 1, 1.533, 2] [sec] for a 

single length of input vector x with n=15. The prediction MAE becomes larger as the prediction 

horizons increase as can be verified in Figure 4 (b). 

 

 

Figure 4. (a)The smallest MAE of 1 second prediction was obtained with n=15 input 

samples to a 2-hidden-neuron neural network, sampling of 15 Hz). (b)MAE is increasing 

with prediction horizon tpred=[1/6, 1/3, 0.533, 1, 1.533, 2] [sec]. 
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 The time series prediction (15 Hz sampling) was carried out for k=500 to 1150 samples by MLP 

predictive model. In our results, we highlight the prediction for tpred=0.5 [sec] (i.e. ns= 8) and tpred= 

1 [sec] (i.e. ns=15) prediction horizons. The model was configured with n=15 samples back used as 

inputs to the network, Ntrain= 180 for the sliding window, and n1=2. Accordingly, the MAE of the 0.5 

[sec] prediction horizon was 0.77 [mm] with 79 [sec] of computing time and the MAE of 1 [sec] 

prediction horizon was 0.96 [mm] with 97 [sec] of computing time.  

4.2 QNU 

In the QNU predictive model applied on 15 Hz sampling data, the predicting results are presented on 

Figure 5 (a)-(b). Figure 5 (a) shows prediction errors at 1 [sec] prediction horizon (= 15 steps ahead) 

by QNU adaptive model using sliding window technique during prediction of time series. The results 

present prediction errors (MAE) for prediction horizon 1 [sec] when lengths of input vector 

configuration were n= (5,8,15,23,30,38,45) of the time series signal Y(k). The number of input-output 

training patterns of the window is settled at Ntrain=425. According to the prediction result for 1 [sec] 

prediction horizon, the smallest prediction error was MAE = 0.90 [mm] when we used n=15 as inputs 

to the network.  

 Figure 5(b) presents MAE of prediction horizons tpred=[1/6, 1/3, 0.533, 1, 1.533, 2] [sec] for a 

single length of input vector x with n=15. The prediction MAE becomes larger as the prediction 

horizons increase (see Figure 5 (b)). 

 The prediction using the QNU predictive model (15 Hz sampling) was carried out for k=500 to 

1150 samples (43 [sec]). The model was configured with Ntrain= 425 input-output patterns for the 

sliding window, n=15 samples back used as inputs to the network. Accordingly, the prediction results 

of 0.5 [sec] prediction horizon was MAE= 0.81 [mm] with duration of 18 [sec] of computing time for 

43 [sec] of treatment time, and MAE = 0.90 for 1 [sec] prediction horizon with duration of 26 [sec] of 

computing time at 43 [sec] of treatment time as well. 

 

Figure 5. (a) The smallest MAE of 1 second prediction was obtained with n=15 input 

samples to a 2-hidden-neuron neural network, sampling of 15 Hz). (b)MAE is increasing 

with prediction horizon tpred=[1/6, 1/3, 0.533, 1, 1.533, 2] [sec]. 

  

6. Conclusion 

In this paper, we have developed a time series predictive models for lung tumor radiation therapy. An 

MLP with one hidden layer and a QNU were developed as predictive models. The adaptation rule for 

the models was the batch optimization (L-M) implemented on retraining (sliding window) technique 

(i.e. a moving window for every new sample as a retraining method). Then we demonstrated the 

predictive capability of the models by the moving window on periodic and highly nonlinear 

respiratory time series for prediction of real data of lung movement. The prediction results obtained by 

the predictive models satisfies the goals of our work for the prediction accuracy of 1 [mm] with at 
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most 1 [sec] prediction horizon. Also, study and comparison of the MLP and QNU predictive model 

performances were presented. For the long term prediction horizon 1 [sec], MLP performed faster at 

15 Hz sampling rate (97 [sec]) than 30 Hz sampling (303 [sec]) at 43 [sec] of treatment time, and with 

the same MAE=0.96 [mm]. Accordingly, QNU predictive model (15 Hz) achieved faster computing 

time (26 [sec]) at 43[sec] of treatment time comparing with MLP (15 Hz). Also, the prediction 

accuracy was improved for the QNU predictive model (MAE = 0.90 [mm]) comparing with MLP 

predictive model (0.96 [mm]). L-M technique was used for non-linear least-squares problems for the 

QNU adaptive model in order to avoid the inverse calculation of the common L-M algorithm. 

Accordingly, the QNU predictive model became computationally faster than the MLP predictive 

model and even faster than the treatment time (43 [sec]). The lung tumor motion predictions were 

achieved by the proposed predictive models based on the adaptation to the time variant period 

involved in the cyclic dynamics of respiration. 
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Symbols 

tpred prediction horizon in seconds [sec] 

t denotes continuous time [sec] 
k denotes discrete time [sample] 

Ntrain number of input-output training patterns [sample] 

MAE 3-D Euclidean distance [mm] 
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