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Abstrakt 
Účelem této práce je odvodit koeficient GDOP (Geometrical Dilution of Precision), 
představující chybu určení polohy uživatele na povrchu Země, a ukázat jeho výpočet 
na praktické aplikaci. Úkolem je rozmístit až 45 družic po obloze tak, aby se 
koeficient GDOP minimalizoval a udával tak polohu hledaného objektu na povrchu 
Země s co nejmenší chybou. Pro optimální rozmístění družic na obloze je použito 
genetického algoritmu. 
 
Abstract 
The purpose of this work is to derive a GDOP coefficient (Geometrical Dilution of 
Precision), that determines the error of the position of observer on the Earth surface, 
and to show a calculation of the coefficient in practical application. The task is to 
distribute up to 45 satellites above the sky so that the GDOP coefficient is minimized 
and determines position of the searched object on Earth surface with minimal error. 
Genetic algorithm is used to determine optimal distribution of all satellites above the 
sky. 
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1. Introduction 

The main motivation for this work is a derivation of GDOP coefficient, practical 
example of its calculation and use of GDOP coefficient for determining positions of 
arbitrary number of satellites above the sky. MATLAB software is used for the 
calculation and simulation of satellites positions and for GDOP coefficient 
calculation. The whole task is divided into three sections. The first part is theoretical 
and shows the derivation of GDOP coefficient. In the second part the use of a genetic 

  

Figure 1: Imaginary pyramids with four satellites in corners of the base and user placed at the tip. 
Pyramid on the left shows satellite distribution that yields a lower value of GDOP coefficient and is 

better than configuration of satellites distributed according to the pyramid on the right that shows worse 
(higher) value of the coefficient. 



algorithm is shown. The algorithm is used to find the most optimal setup of satellite 
positions so that the lowest value of GDOP is reached. The third part includes 
calculation of the coefficient due to positions of satellites previously calculated by 
a genetic algorithm. 

A GDOP coefficient (Geometric Dilution of Precision) is used in satellite navigation 
and positioning and represents a ratio of the position error to the range error [1]. The 
coefficient reflects the dilution of precision in position in three dimensions (PDOP) 
and dilution of precision in time (TDOP). To compute these four dimensions – 
position in x,y,z and time – four satellites are needed. The receiver position is 
computed from satellites positions, the measured pseudo-ranges and receiver position 
estimate. 

Let’s imagine that a square pyramid is formed by lines joining four satellites with the 
receiver placed at the tip of the pyramid (see Figure 1). The volume of the shape 
described by the unit-vectors from the receiver to the satellites used in a position fix is 
inversely proportional to GDOP. The larger is the volume of the pyramid, the better 
(lower) the value of GDOP coefficient is. Reversely, the smaller volume of the 
pyramid is, the worse (higher) the value of GDOP will be. Similarly, the greater 
number of satellites is used for position estimation, the better the value of GDOP 
coefficient is [1], [2]. 

The importance of satellite distribution can be also seen in Figure 2 that shows three 
cases how two satellites and their pseudo-ranges determine the area of possible 
occurrence of the receiver (user). Each satellite has a pseudo-range represented by 
sector of a circle. Real position of the user is in the intersection of real satellite ranges 
(circle with a center in each satellite). However, in reality these ranges shape not just 

  

 

Figure 2: Distribution of two satellites above the receiver (user) - top left and right image show bad 
distribution with large pseudo-ranges, bottom image displays optimal pseudo-range. 



one point in the place where they cross, but an area instead. This pseudo-range can 
vary according to the position of satellites above the sky. While the angle between 
satellites is too wide, the pseudo-range where user can be present is large rather long. 
The similar situation occurs while the angle between satellites is too small. Optimally 
a smallest possible square area is required. 

2. Derivation of GDOP Coefficient 

For the position of the user the following equation applies (see Figure 3) [3]: 

 iiU DRR −=  (2.1) 

RU – position vector of the user (unknown) center of Earth - user 
Ri – vector from the Earth’s center to the satellite  
Di – vector from the user to the satellite 
 
The equation (2.1) is multiplied by vector ei, that is a unit vector in direction of Ri: 

iiiiUi DeReRe −=  (2.2) 

For the vector, its absolute value and a unit vector in its direction the following 
proposition is valid: 

ReR =  (2.3) 

Now for the equation (2.2) equation (2.3) is applied, and this operation gains 
following: 

iiiUi DReRe −=  (2.4) 

Vector Di magnitude (its absolute value) is a distance user - satellite. The equation 
(2.4) conforms (2.3) equation between numbers, not vectors. 

For the distance iD  the definition applies: 

iuii -B-Bρ D =  (2.5) 

In this equation: 

iρ  - is so called pseudo-range (pseudo-distance user – satellite that corresponds to the 
duration of signal propagation from the satellite to the user). Term pseudo-range 
means that this distance is not determined by the duration of signal propagation from 
the satellite to the user. It is due to the non-constant properties of the atmosphere 
(permittivity, permeability) and/or due to the reason of non-propagation of the signal 
to the user (bounces from the buildings, mountains, etc.). 

 
Figure 3: Geometry of vectors for position determination 



Bu – is a user’s time offset from the theoretically correct time 
Bi – is a satellite time offset from the theoretically correct time 
The equation (2.5) is established into (2.4) and the following equation is obtained: 
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The equation (2.6) applies for one user and theoretically for any satellite (arbitrary 
number of satellites). 

Let’s mark coordinates of the directional vector from the user to the ith satellite as ei1, 
ei2, ei3. 

The equation (2.6) can be transcribed for more satellites. It will be shown that for the 
explicit determination of position it is necessary to have three satellites. If more 
satellites are available, the optimal solution will be found in accordance by a least 
square method. If the user time offset BU is necessary to determinate, at least four 
satellites will be needed. 

The equation (2.6) can be transcribed for more satellites: 
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If RUi is determined then the position of the user is known and the task is being 
solved. 

The system (2.7) is obviously possible to rewrite and solve out using a matrix form. It 
can be marked that: 
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Matrix dimensions are following (n = number of satellites, n ≥ 4). 

Gu <n × 4> 
Xu <4 × 1> 



Au <n × 4n> 
S <4n × 1> 
ρ <n × 1> 

Using these assumptions the equation (2.7) can be re-written in a matrix form as 
follows: 

ρSAXG uUU −=  (2.8) 

Searched position of the user and the time offset of his receiver are included in 
vector Xu, and the resolution of the system (2.8) for Xu is our task. 

If we had exactly four satellites the solution of (2.8) would be following: 

)(1
ρSAGX uU −= −

U  (2.9) 

Providing that the inverse of Gu matrix exists – if all satellites are distributed 
“correctly”. It would not be calculated while all satellites are in one position or in one 
line consecutively. Both situations are universally irrational. Positions of satellites 
obviously influence the accuracy of user position determination, because pseudo-
ranges are burdened by random errors.  

If the signal received comes from more than four satellites, the equation (2.8) can be 
converted by adding vector of unknown errors e so that equations are algebraically 
correct: 

ρSAeXG uUU −=+  (2.10) 

For the error vector e applies the following: 

UUu XGρSAe −−=  (2.11) 

The system (2.11) can be calculated using a least squares method – minimizing the 
sum of quadrate of errors, i.e. sum of quadrates of vector e elements. 

The sum of quadrates of errors is given by a scalar product: 

)()( UUuUUu XGρSAXGρSA −−−−== TTeeP  (2.12) 

The equation (2.12) can be modified using an operator for transpose and by 
multiplication: 
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While applying a transpose function the following equation was used: 
TTT AB(AB) =  

Due to the previously given dimensions of vectors and matrices in equation (2.13) it is 

obvious that members UU
T

u XGρ)S(A −  and ρ)S(AGX u
T
U

T
U −  are scalars (numbers) 

and are equal. Using this assumption the equation (2.13) can be re-written as follows: 
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In this moment we are looking for such XU so that the sum of quadrates of errors P is 
minimal. We can derive the equation (2.14) by XU and set it equal to zero in order to 
find optimal XU: 
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In derivation we have used following matrix equations: 
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Now we set the derivation equal to zero and calculate XU. 
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Arrangements are proceeded on condition that inverse of matrix U
T
UGG  exists. 

From now on we will consider about the error in determination of position GDOP 
from satellites using the equation (2.16). 

Covariance matrix of position errors X is defined as follows: 

)))(((cov T
UUUUU EXXEXXEX −−=δ  (2.17) 

where E is the operator of the mean value. We assume that the mean value of the 
position error is equal to zero. With this assumption the equation (2.17) can be 
simplified: 

)(cov T
UUU XXEX =δ  (2.18) 

while knowing that equation for Xu is known (2.16). The equation (2.16) can be 
substituted into (2.18): 

))( )((cov 11 TT
U EX −− −−= U

T
UUuu

T
UU

T
U GGGρ)Sρ)(AS(AGGGδ  (2.19) 

Matrices GU consist of measured values and that is why we can impute it before the 
operator of mean value: 
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Because we are interested in calculating the position error from the geometry 
distribution of satellites (GDOP), we can define the following:  

I=−− TE ρ)Sρ)(AS(A uu  (2.21) 

In the equation above, I represents the unit matrix 4×4. Under this assumption for 
covariance matrix of errors, the following equation is valid: 
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Because the first two matrices are mutually inverse:  
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Because the covariance matrix is symmetrical, the rest of the equation (2.22) can be 
simplified as follows: 
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This covariance appears as: 
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The diagonal values in matrix (2.24) represent the variance of the estimated user 
position in each axis and in the user time offset. The individual factors of GDOP are 
given as follows: 

22
yyxxHDOP σσ +=  (2.25) 

zzVDOP σ=  (2.26) 

222
zzyyxxPDOP σσσ ++=  (2.27) 

ttTDOP σ=  (2.28) 

2222
ttzzyyxxGDOP σσσσ +++=  (2.29) 

Estimates of errors in user position or in user time are given as a product of GDOP 
factors and estimates of errors in range measurements. 

3. Finding Positions of Satellites 

For the calculation of GDOP coefficient itself it is necessary to know positions of 
satellites on orbit around the Earth. Because from the theory and derivation from the 
Chapter 2 it appears that the minimal value of the coefficient GDOP is while all 
satellites are distributed equally above the sky – their mutual distances are equal [3]. 

The sky can be approximated as a hemisphere with a center placed in the center of 
Earth. The estimated position of the object is placed on the Earth’s surface, however, 
satellites are placed on geostationary orbit with a radius approximately 7-times greater 
than radius of Earth. Thus the above listed assumption can be applied. 

Since the satellite cannot be placed exactly above the horizon, because the emitted 
waves from the emitter may not reach the receiver due to the surface asperity, it is 
necessary to set up the minimal elevation angle. Under this angle the satellite cannot 
be placed. Practically this elevation angle equals to 5º. A schematic sketch displayed 
in Figure 4 shows the estimation of total elevation angle. Due to the approximation 
described above it is necessary to add a correction of 8.7º. 



 

Figure 4: Schematic sketch displaying the estimation of total elevation angle equal to 14º (degrees) 
approximately. 

For equal distribution of satellites above the sky multiple heuristics can be used – 
from the planary coverage of the area, through random selection up to algorithms of 
artificial intelligence [4]. In this work a method of genetic algorithms was selected. 
This method is inspired by Darwin’s theory of descent. 

The algorithm uses a group of solutions between which it selects the best ones. These 
selected solutions are combined between each other (so called crossover) and this 
leads to newly incurred solutions. In the meantime the week solutions (worst ones) are 
being eliminated. In order to prevent the group of solutions to be restrained just to 
combination of already existing solutions, with known probability the mutation of 
selected specimens occurs in every step of the algorithm. 

The effort is to enhance the population in every step of the algorithm that can lead to 
the retrieval of optimal solution, or solution close to the optimal one. 

For the estimation of the quality of the solution so called fitness function can be used. 
This function can take arbitrary form. In this example the fitness function is a function 
of distances between two closest satellites and is specified by following formula: 
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The aim is to maximize this function. 

Positions of satellites of concrete solution are for the purpose of algorithm coded into 
so called genome, or chromosome. Such a chromosome contains of genes and each 
gene represents one satellite. Values of the gene represent the spherical coordinates of 
the satellite. At the beginning of the algorithm these spherical coordinates are selected 
randomly for each specimen. 

The population matrix goes through four phases in the algorithm. Firstly the elitism is 
applied where k specimens with the best value of fitness function are selected from 
the population. These specimens are isolated from the population and preserved to 
ensure the conservation of the present best solution. In the second phase of the 
algorithm the crossover of two selected genomes occurs. The place of the crossover 
process is selected randomly and a new specimen originates. This new specimen picks 



up part of the information from the first specimen and part of information from the 
second specimen. This process is shown in Figure 5. 

In the mutation phase the random change of one gene in the genome occurs. During 
the elimination phase the worst specimen is suspended from the population. After this 
phase the specimens that were at the beginning preserved (elitism phase) are returned 
back into the population. All four phases repeat again, as is shown in the following 
pseudo code: 

 

Algorithm is terminated when all k iterations run over. In order to obtain good results 
it is necessary to select sufficient amount of iterations or select the termination 
condition so that the value of fitness function will not change more than is the defined 
certain value. 

 
Figure 5: Process of crossover of two specimens and origination of a new specimen 

Population = Generate_random_opulation(population_size) 
while end condition not satisfied do 

// Preserve elite 
Elite = Pop_elite_from_population(elite_size) 

 
// Reproduction 
Indiv_1 = Get_random_individual_from_population() 
Indiv_2 = Get_random_individual_from_population() 
New_indiv = Apply_crossover(Indiv_1, Indiv_2) 
Add_indiv_to_population(New_indiv) 

 
// Mutation 
Mutatate = Random_number 
if Mutate <= Mutation_probability 

Mutated = Get_random_individual_from_population() 
Mutated = Apply_mutation(Mutated) 

end 

 
// Elimination 
Eliminate_worst(elimination_count) 

 
// Restore elite 
Return_elite_to_population 

 
// Remember best solution 
Currently_best = Get_best_individual() 
if Evaluate(Currently_best) > Evlauate(Best) 

best = Currently_best 
end 

end 
return Best; 

 



Figure 6: Positions of satellites during their distribution (top left: 1 iteration, top right: 500 iterations, 
bottom: 10,000 iterations) 

For the calculation of the algorithm described above and for the visualization of the 
results the MATLAB application can be used. Figure 6 displays three plots – in each 
there is an Earth displayed with the imaginary hemisphere with radius of 
geostationary orbit. On this imaginary hemisphere individual satellites are displayed. 
The figure shows the process of the algorithm when the solution reaches its optimum. 
Firstly the system starts from the random configuration of satellites that are being 
slowly distributed in the way that the minimum distance function is maximized. After 
10,000 iterations satellites are distributed equally above the hemisphere. 

Number of satellites and elevation angle can be changed arbitrarily. Also the set up of 
the algorithm can be changed (number of iterations, number of reproduced specimens, 
size of the population, mutation probability). 

4. Calculation of GDOP Coefficient 

Calculation of GDOP coefficient was described in detail in Chapter 2. Genetic 
algorithm described in Chapter 3 allows obtaining positions of satellites above the 
sky. For GDOP coefficient calculation MATLAB and data obtained from previous 
calculations by genetic algorithm can be used. The output of this part of computer 
program is a GDOP coefficient and its parameters: PDOP (dilution of precision in 
position in three dimensions), HDOP (dilution of precision in two horizontal 
dimensions) and TDOP (dilution of precision in time). 

MATLAB program environment allows user to optimize its own graphical user 
interface (GUI) for work facilitation with a computer program. In the top left corner 
of the application window of GUI (please see Figure 7) it is possible to enter three 

 



variables – input parameters i.e. number of satellites above the sky, elevation angle 
over the horizon and number of iterations of genetic algorithm. A pushbutton labeled 
Start výpočtu runs the computer program which according to entered input parameters 
calculates the optimal distribution of satellites and determines values of coefficient. 
These values are displayed in corresponding text fields in GUI window. 

As an additional output two plots are displayed on the right hand side of the GUI 
window. Top plot shows a polar chart of satellites above the sky, the bottom one 
displays the same satellites distributed in 3-D view.  

Figure 7 displays the application window and results for distribution of 45 satellites 
including DOP values. From this example it can be observed that satellites are 
distributed evenly above the hemisphere, however to reach such a performance at 
least 160,000 iterations are necessary to reach a good distribution at the expense of 
calculation time. 

5. Results 

Examples in previous chapters show that program using a genetic algorithm is able to 
distribute variable amount of satellites evenly on the hemisphere and that the 
distribution quality is dependent on number of iterations used. The higher the number 
of satellites, the higher the value of iterations is needed in order to obtain a good 
solution.  

 

Figure 7: Input and output parameters and results for distribution of 45 satellites 



Derived calculation of GDOP coefficient was integrated into the computer program 
and value of GDOP can be computed for any setup of satellites. In order to show how 
this coefficient changes due to the satellites distribution is shown on the following 
example in Figure 8. In this case 4 satellites are being distributed evenly, the process 
is shown in pictures and respective values of computed GDOP are displayed bellow 
each step. 

The computer program was tested for various numbers of satellites, different values of 
elevation angle over the horizon and for various numbers of iterations of genetic 
algorithm. Table 1 shows input parameters and calculated DOP coefficients for three 
examples – 4, 12 and 45 satellites. 

Table 1: Results and values of coefficients and input parameters for 4, 12 and 45 satellites 

Nr. of  
satellites  
[-] 

Angle 
above the 
horizon [º] 

Nr. of 
iterations  
[-] 

GDOP [-] PDOP [-] HDOP [-] TDOP [-] 

4 10 5,000 1.7322 1.6331 1.1547 0.3334 

12 14 20,000 1.1460 1.0752 0.6537 0.1573 

45 14 160,000 0.6139 0.5691 0.3471 0.0531 

The model presented in this paper is considerably simplified. The Earth is considered 
as a regular sphere with no unevenness as mountains, buildings, trees, clouds etc. All 
these obstacles spawn deterioration in quality of satellite visibility and signal 
transmission. In reality it is possible to receive signal from 4 to 11 satellites at the 
time [5], thus values for 12 and 45 satellites shown in Table 1 are not corresponding 
to reality, however it is shown that genetic algorithm is able to distribute even high 
amount of satellites above the hemisphere and that with more satellites used the better 
value of GDOP is obtained. The quality of DOP coefficients is evaluated according to 
the categorization shown in Table 2 [6].  

Table 2: DOP ratings 

DOP Rating 
1 Ideal 
2 – 3 Excellent 
4 – 6 Good 
7 – 8 Moderate 
9 – 20 Fair 
21 – 50 Poor 

   

Nr. of iterations: 5 
GDOP: 4.0341 

Nr. of iterations: 50 
GDOP: 1.8700 

Nr. of iterations: 500 
GDOP: 1.7123 

Figure 8: Progress of satellite distribution and values of respective GDOP coefficients 



6. Conclusion 

In the paper the derivation of GDOP coefficient and computed examples were shown. 
The calculations prove that coefficient is dependent on the distribution of satellites 
relatively to the user’s position. More even the distribution is the better value (lower) 
of GDOP coefficient is obtained. Also more satellites are used for navigation the 
better value of GDOP is reached. The optimal distribution of satellites was reached 
using a genetic algorithm. Further work will be focused on better approximation of 
conditions that would approach a real situation. Also the possibility of use of neural 
networks for GDOP approximation will be examined. 
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