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Abstract (in Czech)

Prispevek se zabyv&eSenim dofedné kinematiky hexapodu pomoci metody strukturni
aproximace. Tento koncept nahrazgggenou strukturu jeji zjednoduSenou podobou, keera
analyticky /eSitelna. TotoeSeni je zakladem itefaiho cyklu. Metoda byla vyzkouSena na
reSeni inverzni kinematiky neanalytickych seriowygthanism. Tento pispevek ukazuje
pouziti metody proreSeni dopedné kinematiky paralelnich mechanism metoda je
demonstrovana narfpacd hexapodu v 3R3R konfiguraci. Je ukazano sestaw&nic pro
iteracni cyklus. Dale je porovnana vymni nar@nost metody s klasickymieSeni
Newtonovou iteréni metodou.
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1. Introduction

The investigated problem is the solution of posilokinematical problem for analytically
non-solvable (so called non-simple) mechanicalesyst (mechanisms) [2]. The traditional
solution method is the Newton method. However, paper deals with a new method for
positional kinematical solution of mechanisms witops. The method is based on the
concept of structural approximation, i.e. the st of the mechanism being solved is
simplified in such a way that the mechanism withgified structure is analytically solvable.
The analytical solution is the basis of the itenatiThis method has been successfully applied
for the inverse kinematical solution of non-simpkxial robots [1]. This paper extends this
method for mechanisms with loops and specificatly forward kinematical solution of
parallel kinematical structures. The method of dtrtal approximation is demonstrated on
Hexapod.

2. Method of Structural Approximation

If a kinematical structure is not analytically saibke then it includes usually some structural
(topological) feature that is responsible for th@-solvability. If this feature is removed the

resulting kinematical structure becomes solvabig.(E). Such feature is for example the
distance of rotational axes in non-spherical rakost [1]. If this distance is set to zero, the
serial robot becomes simple and the inverse kineaigiroblem is solvable. This analytical

solution is then computed for the perturbed rightdh side of kinematics constraints
evaluated from the pervious values of coordinakéss is the basis for iterations.

The kinematical structure is described by the coatéss. These coordinates are constrained
by the kinematical constraints:

f(s)=0 (1)



These equations are not analytically solvable.tBey can be split into the simple p&sthat
is analytically solvable and the non-simple fag that is causing the non-solvability. This
corresponds to the Fig. 1.

f(s) =f5(s) +fys(s) =0 2)

Because the paf§ that is analytically solvable it can be developedteration scheme
fs(8) = ~fs(s) 3)
S =5 (frs(s)) (4)

This iteration scheme converges and this can bekekeby traditional means [2] of
comparison of magnitudes of partial derivativededhand right hand sides of (3).

Fig. 1.Non-simple kinematical structure and its structuapproximation

3. Hexapod

The forward kinematical problem of Hexapod, thaina analytically solvable, has been
solved by the method of structural approximation.
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Fig. 2. Traditional hexapod in 3R3R configuration



The traditional Hexapod is in Fig. 2. The structaaproximation is introduced by setting the
distance B1B2 to zero. However, the particular citmal approximation is carried out by
supposing the knowledge of the vector B1B2 frompfrevious solution (iteration). The point
A2 is moved by B1B2 to the point A2’ and the resigtmechanism is analytically solvable
(Fig. 3). The position of the point Bl is determdnas the intersection of three spherical
surfaces from points Al, A2, A2'.

Fig. 2. Traditional hexapod in 3R3R configuration

This can be written as:

|rBl _rA1| = I—11
|r31 _rA2| = L12

|r|32 _rA2| = I-22 (5)
Structural approximation is expressed as:

+r|3152| = Lzz

‘rm _(rAZ _rBlBZ)‘ =L,
‘rm _(rAZ _b@BlBZ)‘ =L,

|r51 - rSAPl| = L22 (6)

|rBl_rA2

where r,,, IS a vector of the structural approximation, tlee radiusvector of the point
A’2.These equations give the intersection of theleerical surfaces:

(XBl_XA1)2+(yBl_ YA1)2+( 4~ Zu)z: En
(XBl_XA2)2+(yBl_ yA2)2+( 4~ 42)2: Erz



(XBl_XSAP.L)2+(yBL_ ySAH)2+( Zg~ ZSAlgz: E: (7)

where
Xn1 Xg1
M =] Ya | 1 =| Yeu | €IC. (8)
Zy Zy

After multiplication, the second equation can bbtsact for the first one and the third form
the first one:

2(XAz_XAl) XBl+2( Yo~ yAl) Yot 2( /v Zsa) =
e = Li1_x/§1_ Y§1_ Zil_ Liz"' )§2+ yﬁz"’ Ziz
2(XSAP.L_XAL) XBL+2( Ysan™ yA) Yat 2( Zspg™ Zz) Zg=...

—_12 2 2 2 2 2
oo T L11_ Xa1~™ Yr~ 2™ L22+ Xaprt yZSAPl+ ZZSAEE
9

Equation (9) can be solved as a set of linear emguah unknowns xB1, yB1. Using the
Cramer’s Rule the solution is linear in a variabBd ;

XBl = kl,l &Bl+ q.,l
yBl = k2,1 |}Bl-'- qZ,]

(10)

By insertion of the solution (10) in the equatidc) we get a quadratic equation for zB1.:

(k1,1251+ ql,1)2 _2( K.t ql) Xpit---

(k2,12|31+ 02,1)2 _2( K12+ qz,) Yap it

251 -2 25 Lpp = |-222 - )gSAa_ );SAE_ ZSAP
(11)

The correct solution is the maximum.

_bz,l + \ bil -4 a,,C,, ( 1 2)

28,

Zy = max[( 251)1 1( 781)2] =

This is repeated for each point B1, B2, B3 of tha&fprm. Then the knowledge of these
points is used for the computation of the orieotatof the platform and hence again the
position of the vector B1B2. It is very essentlattthe orientation is determined only as the
elements of the matrix of direction cosines andawthe Euler or Cardan angles. The Euler
or Cardan angles are computed only at the endeoftéiations. Or the matrix of direction
cosines can be computed stepwise using the laaticte of Bi points. The iteration progress
is shown in Fig. 4 and 5. The convergence of théhatkis very robust — the number of the
iteration steps depends on the initial iteratioly @mperceptibly.
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Fig. 4.Iteration process — Fixed initial iteration
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Fig. 5.Iteration process — Initial iteration equals preu position on trajectory

This procedure has been compared with traditiomdlition by Newton iterations. The
comparison is shown on a computation of the forwl@reematics problem on a sample
trajectory. The trajectory was chosen from a gdrwaition near an edge of working space
(Fig. 6) back to a basic positios £ 0). Tests were carried out on several computers with
various computational performance and the resuéiseveompared. The comparison of the
computational complexity (elapsed time — actuaktidepends on computer performance but
the ratio remains the same) is in Fig. 7. The nethfestructural approximation is favourable.
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Fig. 7.Computational complexity of kinematical solution

Furthermore, the influence of the initial iteratimshown in Fig. 7. The robustness of the
structural approximation is much more bigger in sageygions of working space.

Because the hexapod in the presented 3R3R contiiguriz difficulty to design the future
interest will be given to the extension of this hwat for solving the kinematical problem of
the more general 6R6R hexapod.



Conclusions

The paper describes a new procedure of structppabaimation for the solution of positional

kinematical solution of parallel kinematical stuas that are not analytically solvable. This
procedure achieves better computational complekén the traditional Newton method. The
procedure has been used for the solution of forkarematical problems of the hexapod in
the 3R3R configuration.
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List of symbols

S coordinates vector [m]

Il Ai radius-vector of point A [m]
Isi radius-vector of point A [m]
Xai, Yair Zai X, Y, Z — component of point; Aadius-vector [m]
X8i, YBi, Zi X, Y, Z — component of point; Aadius-vector [m]
Ljj length of the leg between pointsaad B [m]
I'sap structural approximation vector [m]
XsAp Ysap Zsap X, Y, Z — component of structural approximatiootee [m]
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