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Abstract (in Czech) 
Příspěvek se zabývá řešením dopředné kinematiky hexapodu pomocí metody strukturní 
aproximace. Tento koncept nahrazuje řešenou strukturu její zjednodušenou podobou, která je 
analyticky řešitelná. Toto řešení je základem iteračního cyklu. Metoda byla vyzkoušena na 
řešení inverzní kinematiky neanalytických seriových mechanismů. Tento příspěvek ukazuje 
použití metody pro řešení dopředné kinematiky paralelních mechanismů – metoda je 
demonstrována na případě hexapodu v 3R3R konfiguraci. Je ukázáno sestavení rovnic pro 
iterační cyklus. Dále je porovnána vypočetní náročnost metody s klasickým řešení 
Newtonovou iterační metodou. 
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1. Introduction 
The investigated problem is the solution of positional kinematical problem for analytically 
non-solvable (so called non-simple) mechanical systems (mechanisms) [2]. The traditional 
solution method is the Newton method. However, this paper deals with a new method for 
positional kinematical solution of mechanisms with loops. The method is based on the 
concept of structural approximation, i.e. the structure of the mechanism being solved is 
simplified in such a way that the mechanism with simplified structure is analytically solvable. 
The analytical solution is the basis of the iteration. This method has been successfully applied 
for the inverse kinematical solution of non-simple serial robots [1]. This paper extends this 
method for mechanisms with loops and specifically for forward kinematical solution of 
parallel kinematical structures. The method of structural approximation is demonstrated on 
Hexapod. 
 

2. Method of Structural Approximation 
If a kinematical structure is not analytically solvable then it includes usually some structural 
(topological) feature that is responsible for this non-solvability. If this feature is removed the 
resulting kinematical structure becomes solvable (Fig. 1). Such feature is for example the 
distance of rotational axes in non-spherical robot wrist [1]. If this distance is set to zero, the 
serial robot becomes simple and the inverse kinematical problem is solvable. This analytical 
solution is then computed for the perturbed right-hand side of kinematics constraints 
evaluated from the pervious values of coordinates. This is the basis for iterations. 
The kinematical structure is described by the coordinates s. These coordinates are constrained 
by the kinematical constraints: 
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These equations are not analytically solvable. But they can be split into the simple part fS that 
is analytically solvable and the non-simple part fNS that is causing the non-solvability. This 
corresponds to the Fig. 1. 
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Because the part fS that is analytically solvable it can be developed an iteration scheme 
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This iteration scheme converges and this can be checked by traditional means [2] of 
comparison of magnitudes of partial derivatives on left and right hand sides of (3). 
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Fig. 1.Non-simple kinematical structure and its structural approximation 

 

3. Hexapod 
The forward kinematical problem of Hexapod, that is not analytically solvable, has been 
solved by the method of structural approximation.  
 

 
 

Fig. 2. Traditional hexapod in 3R3R configuration 
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The traditional Hexapod is in Fig. 2. The structural approximation is introduced by setting the 
distance B1B2 to zero. However, the particular structural approximation is carried out by 
supposing the knowledge of the vector B1B2 from the previous solution (iteration). The point 
A2 is moved by B1B2 to the point A2’ and the resulting mechanism is analytically solvable 
(Fig. 3). The position of the point B1 is determined as the intersection of three spherical 
surfaces from points A1, A2, A2’. 
 

 
 

Fig. 2. Traditional hexapod in 3R3R configuration 
 
This can be written as: 
 
 1 1 11B A L− =r r  

 1 2 12B A L− =r r  

 2 2 22B A L− =r r  (5) 

 
Structural approximation is expressed as: 
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where 1SAPr  is a vector of the structural approximation, i.e. the radiusvector of the point 

A’2.These equations give the intersection of three spherical surfaces: 
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After multiplication, the second equation can be subtract for the first one and the third form 
the first one: 
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(9) 

 
Equation (9) can be solved as a set of linear equation in unknowns xB1, yB1. Using the 
Cramer’s Rule the solution is linear in a variable zB1: 
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By insertion of the solution (10) in the equation (7c) we get a quadratic equation for zB1: 
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The correct solution is the maximum. 
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This is repeated for each point B1, B2, B3 of the platform. Then the knowledge of these 
points is used for the computation of the orientation of the platform and hence again the 
position of the vector B1B2. It is very essential that the orientation is determined only as the 
elements of the matrix of direction cosines and not as the Euler or Cardan angles. The Euler 
or Cardan angles are computed only at the end of the iterations. Or the matrix of direction 
cosines can be computed stepwise using the last iteration of Bi points. The iteration progress 
is shown in Fig. 4 and 5. The convergence of the method is very robust – the number of the 
iteration steps depends on the initial iteration only imperceptibly. 
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Fig. 4. Iteration process – Fixed initial iteration 
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Fig. 5. Iteration process – Initial iteration equals previous position on trajectory 

 
This procedure has been compared with traditional solution by Newton iterations. The 
comparison is shown on a computation of the forward kinematics problem on a sample 
trajectory. The trajectory was chosen from a general position near an edge of working space 
(Fig. 6) back to a basic position (s = 0). Tests were carried out on several computers with 
various computational performance and the results were compared. The comparison of the 
computational complexity (elapsed time – actual time depends on computer performance but 
the ratio remains the same) is in Fig. 7. The method of structural approximation is favourable. 
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Fig. 6. Hexapod in position near edge of working space 
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Fig. 7. Computational complexity of kinematical solution 

 
Furthermore, the influence of the initial iteration is shown in Fig. 7. The robustness of the 
structural approximation is much more bigger in some regions of working space. 
Because the hexapod in the presented 3R3R configuration is difficulty to design the future 
interest will be given to the extension of this method for solving the kinematical problem of 
the more general 6R6R hexapod.  
 



Conclusions 
The paper describes a new procedure of structural approximation for the solution of positional 
kinematical solution of parallel kinematical structures that are not analytically solvable. This 
procedure achieves better computational complexity than the traditional Newton method. The 
procedure has been used for the solution of forward kinematical problems of the hexapod in 
the 3R3R configuration. 
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List of symbols 
s coordinates vector [m] 
rAi radius-vector of point Ai [m] 
rBi radius-vector of point Ai [m] 
xAi, yAi, zAi x, y, z – component of point Ai radius-vector [m] 
xBi, yBi, zBi x, y, z – component of point Ai radius-vector [m] 
Lij length of the leg between points Ai and Bj [m] 
rSAP structural approximation vector [m] 
xSAP, ySAP, zSAP x, y, z – component of structural approximation vector [m] 
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