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Abstrakt

Clanek se zabyva moznosti vgfupoptického toku pomoci Hilber-Huangovi transfoomale zde
také naznéen dalSi vyvoj studijniho z&nu pomoci této metody. Uvedeno je také srovnéni s
metodou Lucas-Kanade
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1. Introduction

Images have long held a fascination for us, foreygs constantly input a stream of data into our
minds from the world around us. We are processimgges to obtain distance, size, color,
orientation, along with beauty or even a sense amfgdr. We are always analyzing and
characterizing drawings, inscriptions, paintingse #e trying to assign them a level of value and
appreciation accordingly. Our minds are capablinaige processing of the highest order. In recent
times, it has become technically possible to obitai@ges that are more than just a picture. Images
are actually an array of numbers of high precidlat represent point-wise measurements over an
area. Nowadays Images are not just the gray sedile wn a scanned photograph, but a detailed
measure of electromagnetic wavelength and intemsftyesenting color. These arrays of numbers
are handled easily by computer and can thus bdagiesgh, printed, and viewed as an image, while
representing a reality that our own eyes could nsge. The article is going to analyze possibditie
of image processing using Hilbert-Huang transforomatHHT is abbreviation of this name. HHT
contains of from two steps. These steps mentioreety én the following text. This recently
developed empirical mode decomposition/Hilbert-Hutmansform (EMD/HHT) for the analysis of
nonlinear and non-stationary data has been extaiodedlude the analysis of image data. Because
image data can be expressed in terms of an arragwes and columns, this robust concept is
applied to these arrays row by row. Each slicehaf data image, either row or column-wise,
represents local variations of the image being yaeal The article is trying to think about
possibilities and limitations in image analysis ngsiHilbert-Huang Transform. In many cases
Hilbert Huang transform could be a challenge foindoimage processing faster. Thus, the
EMD/HHT approach is especially well-suited for ineagata, giving frequencies, inverse distances
or wave numbers as a function of time or distaateng with the amplitudes or energy values
associated with these, as well as a sharp ideatific of embedded structures. The next part
describes HHT more closely.

2. Hilbert-Huang Transform introduction

The Hilbert-Huang transform (HHT), a NASAs desitgth name, is proposed by Huang et
al.(1996, 1998, 1999, 2003).It is the result of émepirical mode decomposition (EMD) and the
Hilbert spectral analysis (HSA). The HHT uses thdDEmethod to decompose a signal into so-
called intrinsic mode function, and uses the HSAhoé to obtain instantaneous frequency data.
The HHT provides a new method of analyzing nonstatiy and nonlinear time series data. This



article focuses on HHT for image analysis and stimitations for this purpose.

2.1. Theempirical mode decomposition (EMD)

The EMD method [3][11] is a necessary step to reduty given data into a collection of intrinsic
mode functions (IMF) to which the Hilbert spectaslalysis can be applied. An IMF is defined as a
function that satisfies the following requirements:

1. In the whole data set, the number of extrema aachtimber of zero-crossings must either
be equal or differ at most by one.

2. At any point, the mean value of the envelope defimg the local maxima and the envelope
defined by the local minima is zero.

Therefore, an IMF represents a simple oscillatondenas a counterpart to the simple harmonic
function, but it is much more general: instead ohstant amplitude and frequency in a simple
harmonic component, an IMF can have variable aog#itand frequency along the time axis.

The procedure of extracting an IMF is called sgtiiihe sifting process is as follows:
1. Identify all the local extrema in the test data.
2. Connect all the local maxima by a cubic spline lisehe upper envelope.
3. Connect all the local maxima by a cubic spline lisehe upper envelope.

The upper and lower envelopes should cover aliddta between them. Their mean valuems
The difference between the data anglismthe first componett (1):
X(t)-m =h
1)

Ideally, hy should satisfy the definition of an IMF, for thenstruction ofh, described above should

have made it symmetric and having all maxima pasiand all minima negative. After the first
round of sifting, the crest may become a local mmaxn. New extrema generated in this way
actually reveal the proper modes lost in the ihgkamination. In the subsequent shifting process,
h, can only be treated as a proto-IMF. In the nesgh ¢), it is treated as the data, then
hl -m, = h11
(2)
After repeated sifting up to k timeB, becomes an IMF 0, which is

gy — My = hy

Then, it is designated as the first IMF compon8hfiom the data:
c, = hy
3)

2.2.  Thestopping criterion of the shifting process

The stopping criterion determines the number dingjf steps to produce an IMF [3][8]. Two
different stopping criterions have been used tiauktly:



1. The first criterion (4)is proposed by Huang et @1998). It similar to the Cauchy
convergence test, and we define a sum of the diifax, SD, as

S ha®-h @)
> hZ ()

Then the shifting process stops when SD is smidiéar a pre-given value.

SD, =

(4)

2. The second criterion is based on the number c#ifledS-number, which is defined as the
number of consecutive siftings when the numbemeod-crossings and extrema are equal or
at most differing by one. Specifically, an S-numlsepre-selected. The sifting process will
stop only if for S consecutive times the numbergz@fo-crossings and extrema stay the
same, and are equal or at most differ by one.

Once a stoppage criterion is selected, the firg I, can be obtained. Overall, should contain
the finest scale or the shortest period compongettieosignal. We can, then, separatefrom the
rest of the data b¥(t) —c, =r,. Since the residug, still contains longer period variations in the

data, it is treated as the new data and subjectdtetsame sifting process as described above.
This procedure can be repeated to all the subsEquﬁmnd the result is (5)

rn—l - Cn = rn
)
The sifting process stops finally when the residye,becomes a monotonic function from which
no more IMF can be extracted. From the above egustive can induce that (6)

X(t) =) ¢, +r,
=1

(6)
Thus, a decomposition of the data into n-empincates is achieved. The components of the EMD
are usually physically meaningful, for the charaste scales are defined by the physical data.
Flandrin et al. (2003) and Wu and Huang (2004) hsnaevn that the EMD is equivalent to a dyadic
filter bank.

2.3. Instantaneousfrequency

Instead of fact that notations like instantanequexr@y or instantaneous envelope of signal are well
accepted notation of instantaneous frequency has highly controversial. There are two basic
difficulties with accepting the idea of an instargaus frequency as follows. The first is connected
with deeply entrenched influence of the Fouriercsad analysis [12]. The second difficulties arise
from the non-unique way in defining the notatiostantaneous frequency. Nevertheless, these
difficulties now exist as ‘paradoxes’ because afdaduction of Hilbert transform usage [12] . For an
arbitrary time series{ (t), we can always have its Hilbert Transfoxt{t , a¥

vy =2p[XDqr
mot-r
(7
P indicates the Cauchy principal value. This transfexists for all functions of clads” [13]. With
defined X (t ) and Y(t ) we can form complex conjugate pairs. By doing theés have analytical

signal,Z(t ), as



Z(t) = X(t) +iY (t) = a(t)e’® in which a(t) = /X (t)* +Y(t)? and§), = arctan%)

Currently is for us more important conclusion whex defined instantaneous frequency as follow:

(8)
Whole definition is mention in literature [12]. Bhshort introduction should bring out and do more
understandable notation of instantaneous frequindyetter understanding to the next text.

24. Hilbert spectral analysis

Having obtained the intrinsic mode function compuse the instantaneous frequency can be
computed using the Hilbert transform / Hilbert dpacanalysis [3][8][9] 0. The instantaneous
frequency is the term for derivate of the phase/@s saw above. After performing the Hilbert
transform on each IMF component, the original datia be expressed as the real part. Real part is
used in the following form O:

X(t) = Realzn: a, (t)e] 4O

=1

)

3. Optical flow analysis
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Picture 1 - Optical flow evaluation b
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In robotics, optical flow [1][2][4] displayed on &ure 1 is a well known term. By optical flow we
can analyze for example machine movement with tsger scene. In common way optical flow is
evaluated from a series of consequential imagd®s niage interval between all images should be
very short. Images of ball rotation are taken asmgXe in the article. Ball rotation has left diieot
and for evaluation is used well known Lucas-Kanawhod [1][2] . Lucas-Kanade method has to
be realized with some limitations and simplificatcaccording to scene. It introduces an additional
term to the optical flow by assuming the flow to dnstant in a local neighborhood around the
central voxel[7] (This is analogous to a pixel, efhrepresents 2D images data) under consideration
at any given time. Based on this we are able tduate optical flow. | do recommend studying
referenced literature for better understanding. @hele is now going to have deeper look at
optical flow evaluation using HHT method. HHT meathis used only in the simplest way. There
won't be used any stoppage criteria. Analysis wiigchoing to be mentioned is using only the first
iteration for getting IMF datasht (1). It means valuem, is evaluated by the well known basic

val, +val,

equatiorm, = . Hilbert transform is applied after then.



3.1. Hilbert-Huang transforms usage

For analysis are taken similar ball images as icelstKanade method decryption. Images order was
only switched. Now ball rotation is to the rightetition. Matlab is used as the software for whole
analysis. Both images were converted to gray ssyaetrum and opened inside. Images were also
stored as a brightness matrix. Gray scale speasumed for simplification of the whole analysis.
The first part EMD (empirical mode decompositiorf) HHT method was applied over whole
images. Data were read by rows. From both images taken only maximums and minimums.
Other parts are displaced by black color. As enskom both images information about ball
movement stay still saved. Evaluation of maximum arinimum values works as kind of filter.
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Picture 2 - Filtered Image 1: only maxima and minandisplayed

EMD - hall, jpg

20 40 G0 ali] 100 120 140 160 180 Zoo

Picture 3 - Filtered Image 2: only maxima and minanare displayed

In the next steps an appropriate row for evaluasochosen. This row has to be over the ball and
should contain information about ball rotation. Boese purposes is taken row number 90 for both



images. Brightness of both images is containinglaimparts from which could be seen potential
movement to right. This estimation is done by kremlge of analyzed images.

ERAD: images intensity comparation on line 90
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Picture 4 -Brightness comparison on line 90 from previous iesag

Next images are displaying splines creation proeedith defined mean values on both images.
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Image 1, 90: Envelopes and the Mean m1
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Picture 5 —Image 1:spline building from gained maxima and minima p®int



Image 2, 30: Envelopes and the Mean m1
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Picture 6 -Image2: spline building from gained maxima and minimanp®

Picture 7 is displaying mean values comparison doth images. This step is done only on
brightness knowledge. Displayed interval of medne/élows is the interval of brightness changes.
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Picture 7 -mean values from both images comparison

Having prepared and defined all IMF (intrinsic mddactions) components we can apply Hilbert
Transformation. Hilbert transform moves real nursb® complex plain and the result could be
displayed as dependency of frequency [10] on madaitFrequency is evaluated in dependency of
X position on appropriate image. In our exampls iine number 90.



Comparation in complex plain
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Picture 8 —Frequency dependency on magnitude

Next images are displayed frequency dependencyagnitude when ball images are switched. As
you seen from the Picture 8 frequency is differflemtboth. When Images position is switched
frequency is switched too as you see it on Picduré&rom these two images we have seen changes
of frequency which are done. Similar tests wereedowver whole images for all its rows. Results
were till same.
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Picture 9 -Frequency dependency on magnitude

This rapid change could be understood that songeikihappening. This deviation could be read as
optical flow change but there is no proof for tkied of interpretation. From Picture 10 we have
seen 3D comparison of time (x axis value), mageitashd phase. In picture are seen curves
deviations. These deviations depend on numbersiotpplaced on balls. Divergence in curves
behaviors could be read as ball position changaria in the appropriate direction. This could be



understood as no similar conditions during cappnecedure. It means we have fail in reaching
fulfilling conditions. Brightens differences or ptisn could led to failure.
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Picture 10 -3D plot time, magnitude and phase dependency

4. Conclusion

This article wants to show that something happeapioropriate data analysis using Hilbert-Huang
transform. From all images you have seen valuesemewnt based on the ball rotation. To define
results in a more general way more tests have tiohe. Based on images placed inside the article
| believe it is possible to get optical flow in aial easier way than from Lucal-Kanade method.
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