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Abstrakt  
Článek se zabývá možnosti výpočtu optického toku pomocí Hilber-Huangovi transformace. Je zde 
také naznačen další vývoj studijního záměru pomocí této metody. Uvedeno je také srovnáni s 
metodou Lucas-Kanade.  
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1. Introduction  
Images have long held a fascination for us, for our eyes constantly input a stream of data into our 
minds from the world around us. We are processing images to obtain distance, size, color, 
orientation, along with beauty or even a sense of danger. We are always analyzing and 
characterizing drawings, inscriptions, paintings. We are trying to assign them a level of value and 
appreciation accordingly. Our minds are capable of image processing of the highest order. In recent 
times, it has become technically possible to obtain images that are more than just a picture. Images 
are actually an array of numbers of high precision that represent point-wise measurements over an 
area. Nowadays Images are not just the gray scale value in a scanned photograph, but a detailed 
measure of electromagnetic wavelength and intensity representing color. These arrays of numbers 
are handled easily by computer and can thus be displayed, printed, and viewed as an image, while 
representing a reality that our own eyes could never see. The article is going to analyze possibilities 
of image processing using Hilbert-Huang transformation. HHT is abbreviation of this name. HHT 
contains of from two steps. These steps mentioned early in the following text. This recently 
developed empirical mode decomposition/Hilbert-Huang transform (EMD/HHT) for the analysis of 
nonlinear and non-stationary data has been extended to include the analysis of image data. Because 
image data can be expressed in terms of an array of rows and columns, this robust concept is 
applied to these arrays row by row. Each slice of the data image, either row or column-wise, 
represents local variations of the image being analyzed. The article is trying to think about 
possibilities and limitations in image analysis using Hilbert-Huang Transform. In many cases 
Hilbert Huang transform could be a challenge for doing image processing faster.  Thus, the 
EMD/HHT approach is especially well-suited for image data, giving frequencies, inverse distances 
or wave numbers as a function of time or distance, along with the amplitudes or energy values 
associated with these, as well as a sharp identification of embedded structures. The next part 
describes HHT more closely. 
 

2. Hilbert-Huang Transform introduction 
The Hilbert-Huang transform (HHT), a NASA’s designated name, is proposed by Huang et 
al.(1996, 1998, 1999, 2003).It is the result of the empirical mode decomposition (EMD) and the 
Hilbert spectral analysis (HSA). The HHT uses the EMD method to decompose a signal into so-
called intrinsic mode function, and uses the HSA method to obtain   instantaneous frequency data. 
The HHT provides a new method of analyzing nonstationary and nonlinear time series data. This 



article focuses on HHT for image analysis and on its limitations for this purpose. 

2.1. The empirical mode decomposition (EMD) 
The EMD method [3][11] is a necessary step to reduce any given data into a collection of intrinsic 
mode functions (IMF) to which the Hilbert spectral analysis can be applied. An IMF is defined as a 
function that satisfies the following requirements: 

 
1. In the whole data set, the number of extrema and the number of zero-crossings must either 

be equal or differ at most by one. 
2. At any point, the mean value of the envelope defined by the local maxima and the envelope 

defined by the local minima is zero. 
 

Therefore, an IMF represents a simple oscillatory mode as a counterpart to the simple harmonic 
function, but it is much more general: instead of constant amplitude and frequency in a simple 
harmonic component, an IMF can have variable amplitude and frequency along the time axis. 
 
The procedure of extracting an IMF is called sifting. The sifting process is as follows: 

1. Identify all the local extrema in the test data. 
2. Connect all the local maxima by a cubic spline line as the upper envelope. 
3. Connect all the local maxima by a cubic spline line as the upper envelope. 

 

The upper and lower envelopes should cover all the data between them. Their mean value is 1m . 
The difference between the data and m1 is the first component1h  (1): 

 11)( hmtX =−  
(1)  

 
Ideally, h1 should satisfy the definition of an IMF, for the construction of 1h  described above should 

have made it symmetric and having all maxima positive and all minima negative. After the first 
round of sifting, the crest may become a local maximum. New extrema generated in this way 
actually reveal the proper modes lost in the initial examination. In the subsequent shifting process, 

1h  can only be treated as a proto-IMF. In the next step (2), it is treated as the data, then 

 11111 hmh =−  
(2)  

After repeated sifting up to k times, 1h  becomes an IMF 0, which is 

 kkk hmh 11)1(1 =−−  

 
Then, it is designated as the first IMF component (3) from the data: 

 khc 11 =  

(3)  

2.2. The stopping criterion of the shifting process  
The stopping criterion determines the number of sifting steps to produce an IMF [3][8]. Two 
different stopping criterions have been used traditionally: 
 
 
 
 
 
 



1. The first criterion (4)is proposed by Huang et al. (1998). It similar to the Cauchy 
convergence test, and we define a sum of the difference, SD, as   
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Then the shifting process stops when SD is smaller than a pre-given value. 
 
2. The second criterion is based on the number called the S-number, which is defined as the 

number of consecutive siftings when the numbers of zero-crossings and extrema are equal or 
at most differing by one. Specifically, an S-number is pre-selected. The sifting process will 
stop only if for S consecutive times the numbers of zero-crossings and extrema stay the 
same, and are equal or at most differ by one.  

 
 
Once a stoppage criterion is selected, the first IMF, 1c , can be obtained. Overall, 1c  should contain 

the finest scale or the shortest period component of the signal. We can, then, separate 1c  from the 

rest of the data by 11)( rctX =− . Since the residue,1r , still contains longer period variations in the 
data, it is treated as the new data and subjected to the same sifting process as described above. 
This procedure can be repeated to all the subsequent rj's, and the result is (5) 

nnn rcr =−−1     

(5)  
The sifting process stops finally when the residue, nr , becomes a monotonic function from which 

no more IMF can be extracted. From the above equations, we can induce that (6) 

∑
=

+=
n

j
nj rctX

1

)(  

(6)  
Thus, a decomposition of the data into n-empirical modes is achieved. The components of the EMD 
are usually physically meaningful, for the characteristic scales are defined by the physical data. 
Flandrin et al. (2003) and Wu and Huang (2004) have shown that the EMD is equivalent to a dyadic 
filter bank. 
 

2.3. Instantaneous frequency 
Instead of fact that notations like instantaneous energy or instantaneous envelope of signal are well 
accepted notation of instantaneous frequency has been highly controversial. There are two basic 
difficulties with accepting the idea of an instantaneous frequency as follows. The first is connected 
with deeply entrenched influence of the Fourier spectral analysis [12]. The second difficulties arise 
from the non-unique way in defining the notation instantaneous frequency. Nevertheless, these 
difficulties now exist as ‘paradoxes’ because of introduction of Hilbert transform usage [12] . For an 
arbitrary time series, )(tX , we can always have its Hilbert Transform )(tY , as 
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(7)  
P indicates the Cauchy principal value. This transform exists for all functions of class pL  [13]. With 
defined )(tX  and )(tY  we can form complex conjugate pairs. By doing this we have analytical 
signal, )(tZ , as 
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 Currently is for us more important conclusion where is defined instantaneous frequency as follow: 
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(8)  
Whole definition is mention in literature [12]. This short introduction should bring out and do more 
understandable notation of instantaneous frequency for better understanding to the next text. 

2.4. Hilbert spectral analysis 
Having obtained the intrinsic mode function components, the instantaneous frequency can be 
computed using the Hilbert transform / Hilbert spectral analysis [3][8][9]  0. The instantaneous 
frequency is the term for derivate of the phase as you saw above. After performing the Hilbert 
transform on each IMF component, the original data can be expressed as the real part. Real part is 
used in the following form 0: 
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3. Optical flow analysis  

 
Picture 1 - Optical flow evaluation by Lucas-Kanade method 

 
In robotics, optical flow [1][2][4] displayed on Picture 1 is a well known term.  By optical flow we 
can analyze for example machine movement with regards to scene. In common way optical flow is 
evaluated from a series of consequential images.  The mage interval between all images should be 
very short. Images of ball rotation are taken as example in the article. Ball rotation has left direction 
and for evaluation is used well known Lucas-Kanade method [1][2] .  Lucas-Kanade method has to 
be realized with some limitations and simplifications according to scene. It introduces an additional 
term to the optical flow by assuming the flow to be constant in a local neighborhood around the 
central voxel[7] (This is analogous to a pixel, which represents 2D images data) under consideration 
at any given time. Based on this we are able to evaluate optical flow. I do recommend studying 
referenced literature for better understanding. The article is now going to have deeper look at 
optical flow evaluation using HHT method. HHT method is used only in the simplest way.  There 
won’t be used any stoppage criteria. Analysis which is going to be mentioned is using only the first 
iteration for getting IMF dataset1h  (1). It means value 1m  is evaluated by the well known basic 
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3.1. Hilbert-Huang transforms usage  
For analysis are taken similar ball images as in Lucas-Kanade method decryption. Images order was 
only switched. Now ball rotation is to the right direction. Matlab is used as the software for whole 
analysis. Both images were converted to gray scale spectrum and opened inside.  Images were also 
stored as a brightness matrix. Gray scale spectrum is used for simplification of the whole analysis.  
The first part EMD (empirical mode decomposition) of HHT method was applied over whole 
images. Data were read by rows. From both images were taken only maximums and minimums. 
Other parts are displaced by black color.  As is seen from both images information about ball 
movement stay still saved. Evaluation of maximum and minimum values works as kind of filter. 

 

 
Picture 2 - Filtered Image 1: only maxima and minima displayed 

 

 
Picture 3 - Filtered Image 2: only maxima and minima are displayed 

 
In the next steps an appropriate row for evaluation is chosen. This row has to be over the ball and 
should contain information about ball rotation. For these purposes is taken row number 90 for both 



images. Brightness of both images is containing similar parts from which could be seen potential 
movement to right. This estimation is done by knowledge of analyzed images. 

 
Picture 4 - Brightness comparison on line 90 from previous images 

 
Next images are displaying splines creation procedure with defined mean values on both images.  

 

 
Picture 5 – Image 1: spline building from gained maxima and minima points 

  

 



 
Picture 6 - Image 2: spline building from gained maxima and minima points 

 
Picture 7 is displaying mean values comparison for both images. This step is done only on 
brightness knowledge. Displayed interval of mean value flows is the interval of brightness changes.  

 
Picture 7 - mean values from both images comparison 

 
Having prepared and defined all IMF (intrinsic mode functions) components we can apply Hilbert 
Transformation.  Hilbert transform moves real numbers to complex plain and the result could be 
displayed as dependency of frequency [10] on magnitude. Frequency is evaluated in dependency of 
x position on appropriate image. In our example it is line number 90. 



 
Picture 8 – Frequency dependency on magnitude 

 
Next images are displayed frequency dependency on magnitude when ball images are switched. As 
you seen from the Picture 8 frequency is different for both. When Images position is switched 
frequency is switched too as you see it on Picture 9.  From these two images we have seen changes 
of frequency which are done. Similar tests were done over whole images for all its rows. Results 
were till same.  
 

 
Picture 9 - Frequency dependency on magnitude 

 
This rapid change could be understood that something is happening. This deviation could be read as 
optical flow change but there is no proof for this kind of interpretation. From Picture 10 we have 
seen 3D comparison of time (x axis value), magnitude and phase. In picture are seen curves 
deviations. These deviations depend on numbers of points placed on balls. Divergence in curves 
behaviors could be read as ball position change in time in the appropriate direction. This could be 



understood as no similar conditions during capture procedure. It means we have fail in reaching 
fulfilling conditions. Brightens differences or position could led to failure. 
 

 
Picture 10 – 3D plot time, magnitude and phase dependency 

 

4. Conclusion 
This article wants to show that something happen in appropriate data analysis using Hilbert-Huang 
transform. From all images you have seen values movement based on the ball rotation.  To define 
results in a more general way more tests have to be done. Based on images placed inside the article 
I believe it is possible to get optical flow in a much easier way than from Lucal-Kanade method.  
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