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Introduction   
 
There are essentially three major parts to this project; firstly, a simple geometry is created and 
analysed (a flat plate), then experimental data will be compared with the computational results 
to determine how accurate the computation is.  Lastly, an airfoil will be modelled in the same 
computational parameters.  Certain computational parameters set in Fluent, for the flat plate 
model, will be adjusted and compared with the experimental data, in an attempt to investigate 
how the adjusted parameters affect the final result.  Having determined, using the above 
method, the best parameters to provide an accurate result, the analysing of the airfoil will be 
much simpler. 
 
Initially, vital data had to be gathered regarding both the geometry of an airfoil profile and 
data relevant to turbulence.  The data about the geometry of an airfoil prompted some 
discussion, as it was seen to be useful to apply the calculations to an airfoil which was 
required for a specific industrial purpose.  To this end, the Institute of Thermomechanics 
(CAS, Prague) was contacted, Professor Vaclav Tesar (of the above institute) suggested 
calculations be applied to the NACA profile; NACA 63-418, an airfoil intended for use on 
horizontal axis wind turbines (HAWTs).  Professor Tesar provided some images of the profile 
of the airfoil as well as a 51 coordinate list, to allow the creation of the shape of the airfoil in 
Gambit.  The data relevant to turbulence was acquired from the ERCOFTAC database by 
Professor Jaromir Prihoda.  ERCOFTAC (European Research Community on Flow 
Turbulence and Combustion) is a leading institute in the research about flow turbulence and 
combustion.  Though a lot of data was provided, the data most relevant to this project were 
the T3a and T3a- test cases.  The experiments from which this data was gathered were 
performed by Mr Coupland of Rolls-Royce.  As well as experimental data, a detailed 
description of the experimental set-up and procedure were also provided from ERCOFTAC, 
the dimensions from the experiment were used to build the model in Gambit. 
 
Boundary Layers 
 
As stated in the introduction, the main purpose of this project is the modelling of transition 
within the boundary layer on a flat plate.  Thus some basic knowledge of boundary layers and 
their formation is requisite.   
 
For a fluid moving relative to a plate, a boundary layer develops.  The fluid next to a wall is 
moving with the velocity of the wall (usually stationary, so the fluid usually has zero 
velocity), at a long distance from the wall, the fluid has the velocity of the free stream 
velocity.  The boundary layer defines the region where the change between the two situations 
occurs.  For flow over a smooth flat plate, the boundary layer will remain stably laminar up to 
a Reynolds number of 1x105, however if the Reynolds number increases the boundary layer 
will become turbulent (it is almost impossible to maintain a stable laminar boundary layer at 
2x105) [6].  Figure 1 shows the boundary layer profile for the; laminar, transitional and 
turbulent regions as well as the viscous sublayer.  The Figure also shows how the wall shear 
stress varies as distance from the leading edge of the plate increases. 
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Figure 1: The profile of a boundary layer along with a graph showing how the wall shear 
stress varies with distance from the leading edge. 
 
The viscous sublayer as shown in Figure 1 is an important part of the boundary layer, 
especially when attempting to create a mesh.  It can be shown that the non-dimensionalised 
velocity, u/u*, is given by: 
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         (eq. 1) 

 
Where; u is the free stream velocity, ν is the kinematic viscosity, y is the distance from the 
wall (perpendicularly). u* is the friction velocity or shear stress velocity, it is given by ρτ  
(where τ is the wall shear stress and ρ is the density), this term has units of m/s and thus can 
be used to non-dimensionalise a velocity term. 
 
It has been shown, experimentally, that the laminar sublayer is formed if equation eq. 1 has a 
value of approximately 5.  Using this value it can be shown that the sublayer thickness is 
given by: 
 

u
y ν25'=           (eq. 2) 

 
Where y' is the thickness of the viscous sublayer.   
 
This will be important when meshing the model as it is important to have a low mesh density 
in the sublayer, i.e. it is best to have only 1 or 2 cells containing the viscous sublayer (this will 
be discussed further in the ‘Meshing the Flat-Plate Model’ section. 
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Turbulence Modelling 
 
Turbulence 
In Computational Fluid Dynamics the modelling of turbulence is a particularly complex 
problem, derived in part from the fact that there is no actual definition of turbulence.  
Turbulence is normally visualised as being a region of chaotic flow with molecules/regions of 
fluid, in relatively ‘circular’ motion, called eddies.  The radii of these eddies forms a 
continuous spectrum between the smallest possible eddie (discussed more in the successive 
paragraphs) and the largest eddie possible, normally limited in some way by the physical 
geometry of the environment in which the eddies are present.  The above, though useful as a 
method of visualisation is utterly useless from a scientific (& modelling) point of view.  
Turbulence is explained scientifically as having a number of characteristics; Irregularity, 
Diffusivity, High Reynolds Numbers, Three-dimensionality, dissipation and continuity.  
Turbulent flow is random and chaotic, and thus can be described as being irregular, diffusivity 
explains some ‘spreading rate’ of the boundary layer as the flow becomes turbulent. 
Turbulence occurs at large Reynolds numbers; for turbulence on flat plates without a pressure 
gradient it will occur at an Reynolds number of ≈105. Turbulence occurs in three dimensions 
(although the model is only 2-d the turbulence is modelled as being 3-d).  At the small end of 
the eddie spectrum - called the Kolmogorov length scale, the kinetic energy is transformed 
into internal energy due to the viscosity of the fluid, thus turbulence is dissipative.  Lastly, 
though the turbulent region contains small eddies, these are still much larger (in diameter) 
than the molecular scale so the flow can be described as a continuum [4]. 
 
As discussed above, there is a continuous spectrum of eddie sizes, from the largest eddies, 
which are in some way limited by the geometry of the local environment to the smallest 
eddies which are limited by the viscosity of the fluid.  The largest eddies interact with eddies 
which are slightly smaller, and these interact with eddies which are slightly smaller and so on.  
This process is called a cascade and transfers the turbulent energy of the flow into internal 
energy.  The energy spectrum can be represented graphically, as follows; 

 
Figure 2: Two diagrams showing the energy spectrum for a turbulent region.  Figure A uses 
linear scales and Figure B uses logarithmic scales. (From references [4] & [5] respectively) 
 
The spectrum graphs in Figure 2 show three distinct regions.  The region on the left hand side 
of the graphs (region I) is the large eddie region where energy is extracted from the free 
stream by the large eddies, these large eddies pass their energy on to slightly smaller eddies 
etc.  The second region (region II) is the transport or cascade region where the turbulent 
energy is passed, by the cascade process, to the small eddies.  The gradient of the line in 
region II is -5/3, and is described by the Kolmogorov spectrum law: 
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Region III is the dissipative region, where turbulent kinetic energy is lost to internal energy 
due to the viscous stresses in the fluid.  The eddie scale at which this happens is called the 
Kolmogorov length scale [4]. 
 
Computational Modelling 
For simplicity, when deriving the equations used for computational modelling, velocity (U) is 
described in terms of mean velocity Ū and some fluctuation velocity, u.  The same is done for 

Pressure (P), it is described in terms of mean pressure, 
_

P , and some fluctuation pressure, p. 
This is shown as follows: 
 

uUUi +=          (eq. 4) 
 

pPPi +=          (eq. 5) 
 
This gives velocity and pressure values without any time history and which gives a way of 
modelling the components without having to model each individual eddie, in other words it is 
a way of representing the overall picture of what the velocity and pressure are doing without 
being absolutely specific.   
 
Continuity can be represented by the following equation: 
 

0=+
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ρρ

         (eq. 6) 

 
Assuming that the flow is incompressible, the Navier-Stokes equation can be written as 
follows:  
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    (eq. 7) 

 
Substituting equations eq. 4 and eq. 5 into the continuity equation (eq. 6) and the Navier-
Stokes equation (eq. 7) gives the Reynolds-Averaged Navier-Stokes equations, as follows: 
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The above substitution produces a new term, 

jiuu , called the Reynolds Stress Tensor 
function, it is a term arising as a result of the existence of turbulence -  it is a correlation 
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between the fluctuating velocities.  This term is unknown but is required to enable the 
equation to be used for modelling.  This is called the closure problem, there are four main 
types of computational models which can be used to solve this problem; the Algebraic 
models, the One-equation models, the Two-equation models and the Reynolds stress models. 
 
In this project two-equation models will be used.  In these models, two transport equations are 
derived to describe the transport of two scalars (normally either k and ε or k and ω).  The 
Reynolds stress tensor is then calculated using an assumption that it relates to the velocity 
gradients and an eddy velocity - the eddy velocity being obtained from the two transport 
scalars.  The Two-equation models are perceived to offer a good compromise between 
complexity (and thus accuracy) and computational time required [4]. 
 
The assumption used in the two-equation models (as well as others) is that that Reynolds 
stress tensor is related to the velocity gradients by using the turbulent viscosity - This is called 
the Bossinesq assumption.  For preliminary work the k-ω model will be used, this model was 
proposed by Wilcox and is gaining popularity. 
 
The Airfoil 
 
The profile to be used in this project is part of the 6 series, a series which was derived 
theoretically by NACA; it is created by first specifying the desired pressure distribution 
across the wing, then using the Blasius equation (among many others) to derive the optimum 
geometric shape.  The principle idea of the 6 series is to increase the distance over which the 
air flow is laminar up to the theoretical maximum.  The 6 series is only designed to be 
operated in a small range of lift coefficients, but will have very low drag when operated 
within this region.  The code for the six series defines the airfoil's exact geometry and 
characteristics.  The first number (6) represents the series (the 6-series), and thus indicates 
that it is an airfoil designed for increased laminar characteristics.  The second number (3) 
represents the location, from the leading edge, of the minimum pressure, measured in tenths 
of chords (i.e. in this case the minimum pressure is at 0.3 chords from the leading edge).  The 
third number (first after the dash), 4, represents the designed lift coefficient.  The remaining 
two numbers (18) represent the thickness of the airfoil as a percentage of the chord.  A 
subscript number is sometimes placed after the first two numbers to represent the number of 
tenths either side of the specified lift coefficient at which low drag is maintained.  Figure 3 is 
an image of the NACA 63-418 airfoil. [2] 

 
Figure 3: The Profile of the standard NACA 63-418 airfoil 
 
Meshing the Flat-Plate Model 
 
Gambit was used to create a model of the flat plate within the computational domain.  This 
set-up is very simple, the dimensions as well as the computational boundary conditions are 
shown in Figure 4. 
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Figure 4: A schematic of the computational domain including dimensions and computational 
boundary conditions 
 
Meshing this model, though simple, is a non trivial problem.  This is mainly due to the two 
opposing requirements; rapid computation (few cells) and high mesh density in the region of 
interest - the boundary layer (requiring a very high mesh density).  This problem was solved, 
in part, by using graded edge meshes, when using this function, a grading ratio is specified as 
well as an interval count, the grading ratio specifies the amount larger each successive node 
spacing is.  
 
As the primary objective of this project is to investigate transition a fine mesh was required, 
both at the leading edge of the wall and close to the wall along its length.  In arriving at the 
final mesh shown in Figure 5, approximately 10 meshes were created, each mesh was 
inappropriate for some reason; either it was not accurate enough when compared with 
experimental data or it required too much computational time. 
 

Figure 5: The final mesh, created using graded edge meshes with low grading ratios 
 
This mesh has 38659 cells, the cells close to the wall at the leading edge have very low aspect 
ratios (i.e. they are nearly square) as this was found to be a requirement for an accurate mesh.  
The cells adjacent to the wall have a height, perpendicular to the wall, of 0.0338 mm, and the 
second cell has a height of 0.03571 mm, this means that the first two cells form a strip 0.0709 
mm wide which is enough to completely contain the viscous sublayer (see the ‘boundary 
layer’ section). 
 
Analysis Parameters for the Flat-Plate Model 
 
When the meshes had been created in Gambit they were exported to Fluent.  In Fluent, the 
analysis parameters had to be set.  As the purpose of this project is the examination of 
transitional flows, it was important that the correct functions were 'turned on' to allow for 
transition to be modelled.  To this end the most important setting was to turn on 'transitional 
flows'.  Other important settings included setting the viscous model to k-omega and the free 
stream to 'intensity and length scale'.  The free stream conditions were set for the inlet in 
accordance with the ERCOFTAC data, i.e. velocity of 5.4 ms-1, turbulence intensity set to 3 % 
and a length scale of 0.04 m.  Lastly the solver was set to perform 'second order upwind' 
calculations. 
 
The computation converged in 300000 iterations and took approximately 6 hours.  Fluent was 
set to plot a graph of the residuals of; x-velocity, y-velocity, k, omega and continuity, as the 
iteration was performed.  This graph is shown as Figure 6. 
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Figure 6: A graph showing the residuals as the iteration progressed.  It clearly shows that the 
model converged at approximately 300000 iterations. 
 
Results for the Flat-Plate Model 
 
Using the results from the computation two graphs have been plotted; the first shows the 
coefficient of friction against Reynolds number, the second shows non-dimensionalised 
velocity as a function of non-dimensionalised distance (wall units).  As well as the 
computational results, ERCOFTAC data and theoretical results have been plotted on the same 
axis.  The theoretical values were calculated as follows: 
 

Coefficient of skin friction (laminar flow) = 2
1

Re664.0 −

x
  

 
Coefficient of skin friction (turbulent flow) = 584.2)log(Re370.0 −

x
  

 

Reynolds number, Rex = 
ν
xU 0   

 
U0 = free stream velocity, 
x = distance along the wall from the leading edge,  
ν = the kinematic viscosity 
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Figure 7: A graph showing the coefficient of skin friction as a function of the Reynolds 
number for computational, experimental and theoretical data.  The graph utilises log-log 
scales to accurately represent the data. 
 
Clearly the theoretical data cannot show transition, it shows the laminar and turbulent regions 
separately. However, outside of the transitional region the experimental data fits the 
theoretical data very well.  The computational data is also a very close fit in the laminar and 
turbulent regions.  The computation predicts that transition will occur at a lower Reynolds 
number than that which occurs in reality, this is shown on the graph in Figure 7 where 
transition for the computation occurs at a Reynolds number of ≈2 x 104, whereas the 
experimental data shows transition occurring at ≈2 x 105 - a difference of 1 order of 
magnitude.  This is a known problem with the k-omega model; it tends to predict transition 
‘earlier’ than actually occurs experimentally [7]. 
 
The second graph which has been plotted is that of U+ (non dimensionalised velocity) as a 
function of Y+ (non-dimensionalised distance - wall units), it shows how the velocity changes 
on a line perpendicular to the wall.  Again, computational, theoretical and experimental data 
has been plotted.  The theoretical data was calculated using the following formula.   
 
(Laminar region) U+ = Y+ 

(Turbulent region) U+ = 
1 ln y B+ +
κ

  

Where κ and B are constants with values of 0.41 and 5.2 respectively 
 
The experimental data can only be used for the laminar region as the ERCOFTAC data 
provided was of a low Reynolds number flow.  It clearly shows the laminar region and 
turbulent region, both of which fit the theoretical (and experimental) data very.  The 
computed results also show the transitional region where the data doesn’t fit the theoretical 
results (either laminar or turbulent). 
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Figure 8: A graph showing non-dimensionalised velocity as a function of wall units. 
 
For the above computation, the solver was set to ‘second order upwind’, by way of 
investigation the same model was computed with the solver set to ‘QUICK’.  When the model 
had re-converged with the new settings, data about the coefficient of friction was extracted 
and plotted against the Reynolds number on a graph along with the data from Figure 7.  From 
this graph it was not possible to determine if there was any difference in the results when 
using Second Order Upwind or QUICK methods.  In an attempt to discover it there was any 
difference between the results, a graph was plotted of the percentage deviation against the 
Reynolds number; this is shown as Figure 9 
 

 
Figure 9: A graph showing the percentage difference between the coefficient of friction for 
two types of solver (Second Order Upwind and QUICK) as a function of the Reynolds 
number. 
 
Clearly the largest difference is at the transitional region, however this is still less than one 
fiftieth of a percent so it is insignificantly small.  For successive calculations the original 
solver will be used (Second Order Upwind). 
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Conclusion 
Thus far, a simple geometry has been created in Gambit and analysed in Fluent.  The results 
have been compared with theoretical (calculated) values and with data from the ERCOFTAC 
database.  The model has been found to be reasonably accurate at representing the laminar 
and turbulent region, it also predicts transition but predicts it at a Reynolds number 
approximately one order of magnitude lower than that which occurs in reality.  Two solver 
methods have been used and found to produce very similar results, so ‘second order upwind’ 
will be used from here on.  The geometry and domain of the airfoil have been created and are 
being meshed at present. 
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