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Abstrakt: Jedním z problém� p�i �ízení poddajných mechanism� jsou nežádoucí 
zbytkové vibrace. Tvarování vstupu je metoda dop�edného �ízení založená na 
takové modifikaci vstupního signálu, aby výstup m�l požadované vlastnosti. 
V tomto p�ísp�vku je popsán obecný princip metody tvarování vstupu s využitím 
Laplaceovy transformace v kone�ném �ase, v�etn� podmínek nutných pro bodové 
�ízení bez zbytkových vibrací. V druhé �ásti p�ísp�vku je pak provedena ukázka 
�ízení bez zbytkových vibrací na systému se t�ením. 
 
Abstract: In the control of flexible mechanical structures many methods are used 
to reduce unwanted residual vibration. Input shaping is a feed-forward control 
method based on modification of the input signal so that the output performs the 
demanded behaviour. In this paper the general basic principle of input shaping 
using finite-time Laplace transform is described including the derivation of 
necessary conditions for point-to-point control with zero residual vibration. In the 
second part the vibration-less control of system with Coulomb friction is shown. 
 

 
1.  Introduction 

Precise point-to-point motion is a common operation for many flexible mechanical systems 
but it is frequently corrupted by residual vibration. To avoid this unwanted performance 
engineers usually use strong motors and mechanical components of a very high stiffness. But 
despite these design properties machines are still limited by their own dynamics and control 
actions cause vibration of the overall system.  
 
Basically two approaches can be applied to control flexible structures: feedback or 
feedforward. In this paper one particular method of the latter group – input shaping is 
described. Input shaping is based on modification of input signal so that it leads to zero 
residual vibration. This principle proved to be efficient in many applications such as robot 
manipulator [Chang, 2005], telescopic handler [Park, 2004], antisway crane [Valášek, 1995] 
etc. Elimination of vibration using modified input is shown in Fig. 1.1. 
 

 
Fig. 1.1 – Using input shaping to eliminate vibration 
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There are several approaches to vibration suppression based on modification of the input 
signal. Singer and Seering (1990) proposed a pre-shaping technique which consists of 
convolving a control input with a sequence of impulses. Their method is still in progress but it 
leads to time delays, especially in the case of more complex systems, that could be 
unacceptable. Miu (1993) published a method that explains many other theories using 
formulation of the point-to-point control problem in Laplace s-domain. This paper is based on 
the same approach but the description is extended to systems with multiple inputs. The 
necessary conditions for zero residual vibration are then derived using simple mechanical 
model and the results are demonstrated by simulation experiment. In the last chapter it is 
shown that the idea of input shaping can be applied to the flexible systems with Coulomb 
friction that adds nonlinear dynamics as well. 
 
2.  Problem description 

The behaviour of under-actuated linear and time-invariant dynamical system can be 
characterised by the matrix equation 
 

( ) ( ) ( )ttt BuAyy +=�       (1) 
 

where A and B are constant system matrixes, vector y[m×1] denotes system states and u[n×1] 
is control input, where at least m/2>n, i.e. the system includes at least m/2 degrees of freedom 
(DOF) the number of which is larger than the number n of actuators. 
 
The aim of the solution of point-to-point control problem is to evaluate control input u(t) 
required to  transformation of the system from initial state y(t1) to the final state y(t2) that are 
precisely defined.  
The solution of (1) is: 
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Assuming full controllability, Eq. (2) can be transformed by a unique transformation to the 
Jordan canonical form and with some rearrangement it can be re-written in the following form 
[Bhat et al, 1991]. 
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pi is the pole of the i-th Jordan block Ji with multiplicity of ri +1. If k  is the order of the 

system then ( )�
=
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r
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irk

1

1 , where r is the total number of Jordan blocks. 



The right hand side of (3) can be rewritten as a sum of contributions from individual inputs lu  
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where lc is a column of the matrix C corresponding to lu . 
 
The expressions on the right-hand side of (6) resembles the finite time Laplace transform of 
the control input as defined in [Miu, 1993] 
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This equation is equivalent with (1) and connects Laplace transform of the control input with 
the state of the system at the beginning and at the end of the point-to-point maneuver. 
Interesting and important fact is that (8) is algebraic whereas (1) is differential equation. 
  
3.  Necessary conditions for zero residual vibration 

The Laplace transform of the control input has to satisfy equation (8). In this chapter 
additional constrains will be derived in order to ensure zero residual vibration. Exact 
formulation of these conditions depends on the description of the system so the simple 
mechanical model will be used. 
 
The left hand side of (8) is just the algebraic sum of contributions from individual inputs so 
without lost of generality the system with single input can be used for derivation of necessary 
conditions, e.g. two-mass spring damper model in Figure 3.1. 

 
Fig. 3.1 - Spring mass system 

 
This system with one input F and two DOFs x0, x1 is described by equation 
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Demand for point-to-point maneuver without residual vibrations leads to the following 
conditions 
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Using modal coordinates and transformation to the Jordan canonical form [Miu, 1993] 
equation (9) can be rewritten as 
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where ωζζω 21−+−= jp , ωζζω 21* −−−= jp  are complex conjugated poles of the 

flexible mode and 
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and (3). Conditions (11) for zero residual vibration are transformed by above mentioned 
transformation to 

]0;0;;0[)( 02 Xt =z       (13) 
and necessary conditions for )(sU can be derived. It is obvious that the system has two poles 
at zero and two conjugated poles p and *p  (see J in (12) ). Therefore according to (8) the 

conditions must be formulated for ( ) 0=ssU , 
( )

0=sds
sdU

, ( ) pssU =  and ( ) *pssU = . 

Assuming that 01 =t , Tt =2 and zero initial conditions it can be derived 
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and integration of (15a) per-partes results in 
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The Laplace transform of the third row in the Eq. (12) is 
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therefore 
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The whole set of necessary conditions for zero residual vibration is then (compare with (13) ) 

 ( ) 00 ==ssU ,  
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00 X
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A physical interpretation of these conditions is that for point-to-point control without residual 
vibrations the time-bound input signal has to contain zero resultant energy at the poles of the 
flexible modes. If the system is un-damped and so has poles along the imaginary axis this 
condition means that the Fourier transform of the input signal has zero amplitude at the 
system resonant frequency. 
Note: Conditions (19) are formulated in [Miu, 1993] as well but without derivation. 



4.  Simulation experiment 

The following simulation experiment was performed with two mass model of a machine tool 
drive with transfer function between load and motor that can be written as [Sou�ek, 2004] 
(assuming zero external force on load) 
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where p  is gearing ratio, *

Mω  is the anti-resonant locked motor frequency and Mζ  is  the 
damping coefficient. This system has two poles at zero and two complex conjugated poles 

*2* 1 MMMM jq ωζωζ −+−= , *2* 1* MMMM jq ωζωζ −−−= . It is the same situation as (12) 
so the necessary conditions for )(sU zero residual vibration are (19). The control input was 
considered in the following form 
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where *
MMa ωζ= , *21 MMb ωζ−=  and iλ  are weighting coefficients that were computed 

using s-domain synthesis technique [Miu, 1993]. This form of control input was derived as a 
minimum energy solution and it is modified by polynomials of the second and third the order 
to fulfill time domain constrains as well. Time domain conditions were formulated to ensure 
time domain continuity of the input signal 

( ) 01 =tu , ( ) 02 =tu      (22) 
 
The results of simulation experiment are in figures bellow. 

 

   
Fig. 4.1 – Input signal and system response 

 

 
Fig. 4.2 – Poles of the system and zeros of the input signal 



 
The figure of the system response shows that there are no residual vibrations. The contour 
maps of the system and the input signal illustrate that derived conditions (19) are fulfilled and 
zeros of the input signal are precisely at the poles of the system. By multiplication in the 
Laplace domain the zeros cancel the poles and thus the system has zero residual vibration.  
 
5.  System with Coulomb friction 

Precise positioning of real-world systems with Coulomb friction is very difficult and it is 
further complicated if the system has flexible dynamics. To ensure that the input shaping is 
able to deal with this situation the simulation model in Fig. 5.1 was used. 

 
Fig. 5.1 – System with Coulomb friction 

 
Coulomb friction forces were simulated by very simple model 
 

)( 1xsignNFC �⋅⋅= µ      (23) 
where N is the normal force and µ  is the friction coefficient. 
 
The response of this system to the step input is in Fig. 5.2. It shows the problem of precise 
positioning. Moreover after the final stop of the 1m  mass (due to the friction force) there still 
remains some amount of energy trapped in the flexible mode of the system. This energy 
causes vibration of the 0m  mass.  

 
Fig. 5.2 – System with Coulomb friction - Response to unshaped input 

 
The nature of the signum function leads to the model that switches between three analytical 
equations. It would be difficult to perform transformation to Jordan canonical form and 
consequently find the solution in s-domain as mentioned in chapter three. Therefore the 
problem was solved in time domain. 
 
Input was assumed in the form of polynomial function that has to full fill conditions (11). The 
results are in Fig. 5.3. 



 
Fig. 5.3 – System with Coulomb friction - shaped input 

 
 
6.  Conclusions 

The basic principle of the input shaping control using formulation in Laplace domain was 
described considering the system with multiple inputs. The derivation of necessary conditions 
for zero residual vibration, that has been in [Miu, 1993] omitted, was described and the results 
were demonstrated on the simulation model of machine tool drive. 
The way of precise and vibration-less control of the system with Coulomb friction using 
shaped signal was shown. The aim of further studies is implementation of this solution to the 
Laplace domain formulation of the input shaping. 
 
 
 
 
References 

[Bhat, Miu, 1991] Bhat, S.P., Miu, D.K. (1991) Solutions to Point-to-Point Control 
Problems Using Laplace Transform Technique. Journal of Dynamics 
Systems, Measurement and Control, 113, 425-431. 

[Chang, Park, 2005] Chang, P.H., Park, J.Y. (2005) Time-varying Input Shaping 
Technique Applied to Vibration Reduction of an Industrial Robot. 
Control Engineering Practice, 13, 121-130. 

[Miu, 1993] Miu, D. K. (1993) Mechatronics, Electromechanics and 
Contromechanics.  Springer-Verlag, New York. 

[Park, Chang, 2004] Park, J.Y., Chang, P.H. (2004) Vibration Control of a Telescopic 
Handler Using Time Delay Control and Commandless Input Shaping 
Technique. Control Engineering Practice, 12, 769-780. 

[Singer, Seering, 1990] Singer, N.C., Seering, W.P. (1990) Preshaping Command Inputs to 
Reduce System Vibration. Journal of Dynamics Systems, 
Measurement and Control, 112, 76-82. 

[Sou�ek, 2004] Sou�ek, P. (2004) Servomechanismy ve výrobních strojích. CTU in 
Prague, Prague. 

[Valášek, 1995] Valášek, M. (1995) Input Shaping Control of Mechatronical Systems.  
In:  Proc. of 9th World Congress, FTOMM, Politecnico di Milano, 
Milano, 3049-3052. 


